UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
Institute of Computer Science

Speciality of Computer Science

Dmitri Melnikov

F2F Computing as a Base for Network Games

Bachelor's thesis (4 cp)

Supervisor: Ulrich Norbisrath, PhD

AUthOr: ..o “...... June 2009
SUPETVISOL: cooeiiiiieeiiiieee e, ... June 2009

Allow to Defense:
Professor ..o veeeeeeeee e “....."June 2009

TARTU 2009

Contents

INEEOAUCTION. ...ttt ettt st e s bt et e sae e et e st e e e esaeee 3
1. The BUub's BrOthers......c...ooiiiiiiiiiieieeeeeeeee ettt e e 5
L0 B TS € 7 1 1 o LR PRPPR 5
1.2 The game archifECTUIE.eiiiiiiiiiiiiieeieeeee ettt et e e e e 7
2. Client-SEIVEr AICHITECTULE.iiutiiiiieiierite ettt ettt ettt et s bttt e b e s e e et e e e 8
2.1 OVEIVIBW....eiittiiteett ettt ettt ettt ettt et e sat e st e sttt e s it e et esateebeeeenanneee 8
2.2 BUD'S BIOThETS SETVET.....ccu.iiiiiiiiiiiiieiieeiee ettt sttt 8
2.3 BUb's Brothers CHENT.......coc.uiiiiiiiiiiieiieeee et 9
2.4 Bub's Brothers client-Server iNteraCtion............ccuuveeeecieeeeeriiieeeeeiieeeeeiieeeeesreeaeeeeens 10
3. Friend-to-Friend archit@CtUure............ccccuiiiiiiiiiiie ettt e e e e e e eeeeeas 11
31 OVETVIBW....cnitiiiiieieet ettt ettt ettt e ebt e et e bt et e bt e e et eeeeanaeees 11
3.2 INStANt MESSAZINGveeeerieeiiieriiieeiieeeiteeetteerteeesteeessteesteeesssaeesnsaeesessnssaeeeesssnnsseees 11
3.3 F2F fTameWOTK.......oviiieiiiiee ettt e e e st e e e e eeaaee e e nnnnne 12
3.4 F2F APT 0T PYthOn..cc.eeeiiiiiiiiieeeee et 12
4. MOVING 10 F2F. ...ttt e et e et e st e s ate e e e e e ennaes 14
4.1 General apProOaCh........cccuii ittt e 14
4.2 CRALIEIEES.eeineeeeeeee ettt et ettt s e et e st e st e e e 15
4.3 Resulting apPliCAtION.c...eeiuiiiiieiiiiiieeiie ettt ettt ettt e et e e e aeeeeenaee 16
5. F2F in Educational Gaming...........ccocueiiiiiiienienieieeeieesiee sttt st e s e e s e 18
5.1 Educational Gaming..........ccccveriieeriiriiinienieeniteee ettt st st e e 18
5.2 Integration With F2F..........ccooiiiiiiiiiii et e e e 18
LN 11101002 oy 2O PURR PP 19
APPendixX A SOUICE COUEC.........eiriiiiiiriiiiieeieete ettt ettt e e e e e seneees 20
F2F baseeruvad vOrgumanguUd.........c.cueeeiueeiriieiniieiiiie ettt ettt e st e e e s e ee e e e e 21
RETEIEIICES. ...ttt ettt et e et e e s 22

Introduction

Computer technologies are a part of our everyday life. A Web browser, an email client, an
instant messaging software — these are all instruments of an average Internet user. Such typical
users have a certain computational power at their disposal, a certain variety of interests and a
certain circle of friends with whom they interact on a daily basis. It is possible to share and
exploit the available resources by integrating popular instant messaging software with a special
framework. Using this framework users can submit their jobs to their friends in a manner
similar to submitting a job to a Grid.

In this thesis I shall describe the process of porting a standard client-server software to the
Friend-to-Friend (F2F) [1, 8] computing platform using the game The Bub's Brothers [2] as an
example. A detailed explanation of both F2F and client-server architectures is presented. The
resulting application should provide the same features as the original and it should not be
apparent to the average user whether he is using the modified version or the original.

Grid computing [7] is a form of distributed computing where different resources (possibly
scattered around the world) such as CPU units, memory, storage space, special devices can be
combined in one system to perform a given task. Grid contrasts with conventional
supercomputers that are limited to their own hardware however great it might be. As a Grid is
composed of many different resources its size is not fixed, it is designed to grow and shrink
and be as flexible as possible. While in the beginning Grid computing was used primarily by
scientists for their computationally intensive tasks, the situation has been changing rapidly in
the past few years.

If we now consider the Internet users with their resources as a model for a Grid, we can try to
imagine a system where everyone profits. Another important concept is Peer-to-peer
networking. In a peer-to-peer network everyone is equal, there are no clients or servers because
a peer is both a client and a server and there is limited or no centralized control. The great
thing about such a network is that it is always changing, peers come and go and the network
appears to have a life of its own. Peer-to-peer networks can be used for various different tasks
such as file sharing which is their most known use today.

Combining these two models in one a new concept is created: a network that allows sharing
resources between equal peers. If a connection to such a network could be easily made for all
those average users then many would benefit from such a wealth of resources. Fortunately a
software to accomplish this already exists — Friend-to-Friend computing or F2F. F2F uses
instant messaging (IM) to deliver messages between the members of the group, which is
logical since nearly everyone has some sort of IM client installed on their local computer. The
group consists of people from the person's IM contact list and we shall call members of such a
list friends.

It is clear that the variety of software that can be made using F2F is almost limitless. This
comes from the fact that users have different interests — while some would like their friends to
help them with their scientific calculations, others just want to play a game (or maybe do both
at the same time). One of the problems we encounter is that there is a lot of software which is
not ready for F2F computing. The thesis aims to give an overview of how porting applications
to F2F can be conducted.

Since the Bub's Brothers game (a modified version called Mullivelled) has already been used
in an Educational Gaming project [9] caried out at the University of Tartu the secondary goal
of the thesis is to give judgment on how F2F can be used to promote cooperation and
collaboration between users.

1. The Bub's Brothers

1.1 The Game

Bub's Brothers [2] is an open source multi player arcade game written in the python
programming language by Armin Rigo. The game is a direct clone of the famous and highly
successful Bubble Bobble game first released in 1986 and later ported to numerous platforms
and followed by a series of sequels. The players control small animated dragons of different
colors and pass from one level to the other collecting items and throwing bubbles at their
enemies. The goal is to complete all levels and earn as much points as possible.

bbb i Bk B iR eIy AN TN
FaVbad bt b P Pt b FaVFad b b P b rﬂ R R RARAY "’
ot | oy | F
Fan Fan P
oy Forety Bty | by oty Bty |
FapaI b FaA b "

. '1

o A
[}
= B 9
&F1F1F1F1F1F1F1F1F1 F1F1F1F1F1F1F1F1F1
FaT BT T b b bt b bt bt Fat AT T bt b bt bt bt b "l
=1 —ma bty ol | b '
pan panpln e Ton pan Fad
=1 £ =ixa =ixi o
Fay '-1[1 b ks "\
oy I =ixa =ixa

h l
by | oty Ban b ¥ b Fsd
by by Bl Bl | by Bl by Bl bty By honly Bl |
PR FFN b ks PR FFN "

—ima b Fonl| '
BaT LN .o P
."'1."""" oty ot | "

hPadba Fa¥bat
—r bt bk [
BaTba BaTBLY P
bl By Bon ook | bl By Bon ook |

A TR T] PR FFN "
= 4 Fn ol 5 ’,
- /] Fa¥ A

- # 1

(T A PN

v "4

'\
o By Bl Py Bt Bty Pl | bty oty Pty Bl Bl Bl Bl Bl | ,
PATbATbATRINbANY B o Dr T T Do o] Fad

’\

N'l

'\
iy Pty Bl Bl Bl Bl Pl | oty Py Bl ity Pty B | iy Porey Pl Pty Bty Bty Bl |
Rl T T TR T o] el I T T T R IR T TR T T

Figure 1.1 The Bubs Brothers with a single player

The game features many items that can change the behavior of the dragon, for example allow it
to run faster or jump higher. Another interesting feature are the mini-games (i.e. Tetris,
pacman) triggered for a short time by a special item. Such unexpected events contribute to the
positive gaming experience.

Figure 1.2 Galaga mini-game with two players

The game's strong side is it is support for multiple players. Up to 10 players can enjoy the game

together making it even more fun to play.

I 5
e

*i

4
a
=
=
a
=

)
il EEEEEEEEEEEEEEEE

Figure 1.3 A game with 6 players

1.2 The game architecture

To understand how the game is made it is best to start with a quick overview of different
packages and files that are in use.

BubBob.py — a wrapper program that starts the game server, the meta-server and launches the
users browser.

In this game the meta-server is used to set up and control the main server with a browser. For
example a user can change different levels, start a new game, join an existing game and do
other configuration related work. It is also possible to register the server on the Internet and
allow anyone to join. I shall be using the gaming server directly, so the meta-server shall not be
discussed further.

|2 52 = 85 Bubbob/ - contains all the necessary data for the game such as
levels and images. Many python scripts that compose the game are
- ‘5. & % ¥ also located here: boards.py, bonnuses.py, images.py, etc. Because
< 1 bubbros ~the networking code is not located in these scripts, the changes to
" |these files in the modified version are minimal.
P = bubbob
b = cache Common/ - scripts with networking and binary data manipulation
b G reside here. Also the protocol messages are defined in msgstruct.py.
= c?mmcn - |gamesrv.py is of particular interest as it contains most of the logic
P = display of the game server and shall be modified to a great extend.
b & doc Display/ - scripts that actually render the game to the screen using
b & hitp2 one of the possible graphical output systems such as PyGame, GTK
b = java —or Java. And also the networking code for the client, mostly in
b = metaserver pclient.py, which also has to be modified when moving the
Bl artistic txt application to the F2F platform.
BEubBob.icns Other subdirectories do not contain important data for the current
BubBob.log project and shall not be discussed here.
[F] BubBob.py
= INSTALL txt
[=| LICEMSE txt
Makefile [~
(T [>]

Figure 1.4 The game structure

2. Client-server architecture

This chapter gives an overview of the architecture, the algorithms and presents the initial
message exchange between the client and the server.

2.1 Overview

In a a typical client-server architecture the client sends requests for services to the server and
the server responds by providing the requested services. Here, a service can be anything from a
simple message to a large object of data. Clients and servers usually run on separate computers
but can also reside on the same machine (single seat setup) and use a specially defined
language or protocol to communicate. A web browser and a web server are a good example of
such an architecture.

To facilitate the process of moving the application to the F2F platform we first describe how
the client and the server interact in the original game.

2.2 Bub's Brothers server

The main classes that are used by the server are called Game and Client, both contained in
common/gamesrv.py.

The Game class is responsible for opening the data socket, the ping socket, the http socket and
the broadcast socket but also processes new incoming connections, calculates the update
intervals and send the game's update data to all the clients.

The Client class represents a connection to a specific client and has methods for sending and
receiving data and also different kinds of handling function that correspond to the defined
protocol messages.

The heart of the server is the mainloop() function, its algorithm is the following:

1. Looping condition: While there are elements in the list of sockets. The sockets are
created in the Game class and every time a client connects a new socket is added to the
list.

2. A delay interval is computed using the Game class. A delay is based on the time
required by the server to generate a frame.

3. A select function is called with all the sockets and the calculated delay as arguments.
Select is part of the standard networking API provided by python, its job is to return all
the sockets that are ready for input, output or are in the state of error. If the delay
argument is provided then the call to select blocks for no more that the value of the
delay and returns empty lists if nothing is ready.

For all the sockets ready with input, a handler assigned to that socket is called. For the
client socket this handler would receive and process the data.

Handle errors and exceptions. If something unexpected has happened the server
disconnects the problematic client, or may even shutdown itself.

Algorithm 2.1 The server's main loop

2.3 Bub's Brothers client

The client is located in display/Client.py and display/pclient.py and is represented by the
Playfield class.

The Playfield class is responsible for sending, receiving and updating the data on the screen. It
contains handler functions that know how to respond to different protocol messages. It also
takes input from the user's keyboard and mouse.

The central function of the client is (again) called mainloop() and its algorithms is as follows:

AR R

Loop condition: infinite loop

Process the keys pressed by the user.

Call select on the input socket with a default delay.
Process the keys pressed one more time.

If the input socket is ready, receive the message, decode and process it using the
assigned handler.

Check udp sockets that are also maintained by the client. Broadcast messages and data
can be sent and received via udp sockets.

If any data was transferred along with the protocol message, then use it to update the
game.

Call the graphical system's update method to actually render the updated game state to
the screen.

Possibly update the default delay with the value returned by the previous rendering call.

Algorithm 2.2 The client's main loop

2.4 Bub's Brothers client-server interaction

The interaction begins when the select call in the server's mainloop() indicates that the
listening tcp socket is ready. This means that a new client is trying to make a connection.
Having checked that the existing client number does not exceed the maximum, the server
proceeds to accept the incoming connection by creating an instance of the Client class. After
this the following messages are exchanged:

From To Message Handled in

Server Client MSG_WELCOME Playfield.__init__

Server Client |MSG_DEF_PLAYFIELD Playfield.msg_def_playfield
Server Client* |MSG_PLAYER_JOIN Playfield.msg_player_join
Client Server CMSG_PROTO_VERSION Client.protocol_version
Client Server |CMSG_PING Client.ping

Server Client |MSG_PONG Playfield.pong

* - the message is sent to all the active clients
Table 2.1 The initial message exchange between the client and the server

The protocol message names are self-describing with messages sent from the client prefixed
with the letter 'C'. As observed from the table 2.1 the client messages are handler inside the
Playfield class and the server messages inside the Client class. During the initial message
exchange the MSG_PLAYER_JOIN message 1s sent to all active participants so that everyone
is notified about the new player. When these messages are exchanged and processed the new
client is initialized and ready to receive messages with binary data and the game can begin.

10

3. Friend-to-Friend architecture

3.1 Overview

The main idea of Friend-to-Friend computing is to use Instant Messaging to set up a Grid
between people in the same contact list [6]. Most IM systems allow users to create a chat group
by inviting selected friends. F2F uses such group resources to build a computational Grid
(sometimes abbreviated as frid).

3.2 Instant Messaging

Instant Messaging (IM) is important for F2F because the IM layer delivers the actual messages
and data.

IM technologies make real-time communication possible between two or more participants.
The idea of IM is much closer to that of Internet Relay Chat (IRC) than to e-mail because
messages are sent instantly with a minimum delay. However with IM the information about the
contacts is stored in the contact list and there is no need to join a channel just to see who is
there. The procedure of logging on to the IM server is not difficult and requires no special
knowledge, with most clients only a user name (or e-mail address) and a password is required.
One of the advantages of IM are the users' statuses. For example, if a user's status is set to
“Away” then he probably is not present at the moment.

There are many different IM networks that define their own protocols, for example MSN
Messaging, Jabber, ICQ. The IM clients are also different, some provide access to only one IM
network (MSN Messenger, ICQ client) while others can communicate with many (Pidgin, SIP
Communicator). Some of these clients also have F2F support.

11

3.3 F2F framework

application M GUI Application
layer
uses vFUF]S on

adapter F2F VM/
layer 'M Adapter F2F AP

us manages H

threading-and memory es/
core process is started by

F2F Cor
layer buffers Core
\

IM

communication
layer

TCP/IP | | UDP | 1 IPV6 | Bluetooth Inf.band |

stun

Figure 3.1 F2F architecture

The framework can be divided into four layers: application, adapter, core and communication
layer. The task that requires computation is considered to be in the application layer. The task
can use the F2F API or run on the F2F virtual machine, which is in the adapter layer, used for
managing threading and memory. The core layer processes messages forwarded by the adapter.
The communication layer is used to exchange messages. The design of the communication
layer allows it to use different channels for transferring messages. One of these channels is
obviously IM but direct TCP and UDP can be also considered. The goal is to make this layer as
robust and dynamic as possible so that the best connection can be used.

3.4 F2F API for Python

Because the Bub's Brothers game itself is written in python it is convenient to use the provided
python F2F application programming interface (API) when making changes to the game. The
python API is part of the F2FAdapter project called F2FHeadless and it depends on another
project called F2FCore containing the f2f core functionality. F2FCore is written using the C
programming language and the python bindings are created by the SWIG [4] application
automatically during the build process.

The API is small and has only two classes and two global functions, all contained in the f2f
package:

12

Class Peer:

e getUid() - returns the identification of t he peer represented by the class instance.

e equals(otherpeer) - returns true if otherpeer and the class instance are the same,
false otherwise.

e send(group, obj) —send data referenced by obj to the peer represented by the class
instance, a group must also be specified.

e Other methods of the class are used internally and should not be called directly.

Class Group:

e getUid() - returns the identification of the group represented by the class instance.

e equals(othergroup) - returns true if othergroup and the class instance are the same,
false otherwise.

e getPeers() - returns a list of all the peers belonging to this group

e Other methods of the class are used internally and should not be called directly.

f2f.myPeer() - returns an object of the Peer class representing the caller.

f2f.receive([timeout]) - blocks until data is available on the internal stack, then returns
the data. If the timeout argument is provided, waits no longer than the value of timeout.

13

4. Moving to F2F

4.1 General approach

The goal is to move the Bub's Brothers game to the F2F computing platform by substituting
the standard networking code with F2F API. In a F2F network all friends are considered to be
equal and any of them could be a client, a server or even both. However, in the current
application it would be opportune for one friend to act as a server and all others as clients.
Using this model minimum changes have to be made in the existing application to transfer it to
the F2F platform.

The starting point is to understand how the application works from the moment the user starts
the game. The game has a lot of functionality unnecessary for F2F computing such as network
configuration and meta-server and it is important to identify these components so that we
could later remove them.

The game server uses four different sockets to send and receive data: the data socket, the ping
socket, the http socket and the broadcast socket. The code responsible for opening the sockets
is defined in openXsocket() functions, where X is one of {http, ping, tcp, broadcast}. However,
opening a socket is not enough by itself. In a large application we also need a easy and
convenient way to manage the sockets, to add, find and remove them. The original Bub's
Brothers game keeps the following structures:

e socketsbyrole[role] = socket — the socket is referenced by a role, a role can be
one of LISTEN, PING, HTTP, BROADCAST or CLIENT.

e serversockets[socket] = handler — this data structure sets the socket handler (a
function that reads from the socket when it is ready)

e socketports[socket] = port — here the socket's port number is stored

When the application requires for example a socket for listening to new incoming connections,
it can be located with findsocket ('LISTEN'). Similarly, sockets can be added and removed
by their role.

Because F2F does not use sockets directly and provides no mechanisms to handle the sockets,
all of the socket management and creation code has to be removed.

Typical input and output operations with sockets are substituted by the F2F API:
e For receiveing socket.recv() was originally used. f2f.receive() can be used as a
replacement.
e For sending socket.send(data) or s.sendall(data) was used. The difference
between the two functions is that sendall continues to send data until everything is
sent. Both can be replaced with f2fpeer.send(f2fgrp, data).

14

4.2 Challenges

Not everything is directly replaceable and difficulties still occur. The problems are caused both
by the simplicity of the F2F API and the differences in approaches of F2F and standard
sockets. There is no generic algorithm for moving an application to the F2F platform, every
program has to be treated separately. Here we describe some of the common problems that
came up in the process of moving the Bub's Brothers game to F2F along with their possible
solutions. In similar applications the problems can be the same.

e Connection to the server.

In the original game, as seen in Table 2.1, the first protocol message comes from the
server to the client. This is because the server knows about the new client when it
makes a socket connection. Having made the connection, the server then sends the first
protocol message to the client. Meanwhile the client is blocked and cannot do anything
until it receives this message.

With F2F such an approach is not possible because the server does not know of the
client unless the client sends something. The server just waits for data to come and only
when the receive call returns something can the server recognize the sender.

A possible solution is to send the first message from the client itself to the server. For
the game's protocol a new message was introduced — MSG_CONNECT . After receiving
this message the server remembers the new client and the message exchange sequence
described in Table 2.1 begins.

e Select call.

In the original game code a select function call is used to determine which sockets are
ready for reading data. If the delay argument is provided then select will block not
longer than the value of the delay and return an empty list if no sockets are ready. F2F
API originally had no way to imitate the select call with a timeout.

However, it can be simulated by modifying the existing f2f.receive() function.
f2f.receive() works by checking in a loop whether a local message stack is empty.
When a message is available it returns this message. By adding a delay argument we
can create a function that returns by the end of the timeout even if nothing was
received. Such function can effectively substitute the select call.

e Paths.
In the original game, when the game was started the executing code would change the
current working directory (with a os.chdir call). This was necessary because the
game files were referenced with relative paths. This approach does not work however
with the current F2F setup. Because the game is a F2F job, it is not run by the user but
from the F2F client code. Since the calling code has its own dependencies changing the
current directory in the game would also change the paths to these dependencies.

15

A possible solution that was used in this project is to change all the relative paths to
absolute ones.

e Debugging.

Finding problems in a network application is always difficult especially when binary
data is transferred. With F2F it can be even more challenging because it is not obvious
for the programmer how and when the data is actually delivered. Here it is important to
keep the message exchange logic the same as it was before and to be careful when
introducing new protocol messages and their handlers. Current F2F implementation has
a buffer of limited size for sending, however this did not turn out to be a problem for
the current project.

4.3 Resulting application

As the python version of F2F is not yet integrated with an IM client, we shall be using the
F2FHeadless project to represent the peers in the IM group. The peer who starts the group and
submits the job to everyone else is called the initiator or master. The initiator's friends are
called slaves. There can be many slaves but only one master. Finally we must wrap our game in
a special job script that can be used for sending.

The resulting application requires several new python scripts to run: f2fMaster.py, f2fSlave.py,
bubs.py.

e f2fMaster.py represents the friend that initiates the job (the initiator). The initiator has a
list of friends (slaves) that he can form a computation group from. When any of those
friends become connected to the IM server, the initiator automatically sends them the
job. In our application the initiator shall be acting as the game server, however this is
only a matter of choice and the initiator can also be the game client. The script is
parametrized with the list of slaves and can be used from the command line.

e ({2fSlave.py represents the friend of the initiator that receives the job and starts
executing it. In our application all initiator's friends shall be game clients. There can be
many scripts of this kind, each representing a slave, for example we can create
f2fSlave2 and f2fSlave3 scripts and their contents will be almost the same. The slave
scripts are parametrized with the list of masters and can be run from the command line.

e bubs.py is a wrapper around the our game application. It decides what code must the
master and slaves execute. Currently for the slaves a game client is started, while in
case of the master a game server is run.

The implementation of all of these new scripts is simple, f2fMaster and f2fSlave only need to
create a F2FHeadless object by specifying their IM user name and password, the list of friends
(or in case of slaves only the initiator) and the job to execute — bubs.py.

The game was modified using the Eclipse IDE's Pydev plug-in. Eclipse provides a powerful
development environment that facilitates navigating, managing and editing source code. Also

16

the run targets can be added. In the development setup the run targets were set to invoke the
scons building tool that would compile the F2FCore project and run swig to create python
bindings from C code. When scons finishes Eclipse runs the f2fMaster or f2fSlave scripts.

The IM server that was used for testing is Openfire 3.6.3 [5]. Openfire is an open source
Jabber/XMPP server written in Java that has a Web-based administration panel for managing
users and server settings. Thus whenever the f2fMaster or f2fSlave scripts are executed and the
F2FHeadless object is created, a user logs onto the Openfire IM server via the Jabber protocol.

Ideally the game could now be started from an IM client by sending it to all the peers willing
to play. However, the F2F for python is not yet integrated with any IM client and integration is
not a part of this project.

& Bub & Bob Levels —||x Bub & Bob Levels =%

EEEEEE

L4

, r 4

I T T rEEEEEEE =l [EEEEEEE P O

[d [d [d

e ‘ 5] B ¢ & 5] B <. &

= I T i o 12300 = pperErEEE EEFEFFEEEE 12300 =
12050 @. J 12050 @

Bub & Bob Levels =[x

L

EEEEPE
= :
EEEEEF I EEEEEF
E F
r f
ElFEEEE R eerEEEEE It FFFFFFR eeepreEe]
[F [
: I [2 e
=-FFFFFFFFFF Ll o Ll o
12050 % =
FFFFFFFFFF al-'l-'l-'l-'l-'l-'l-'l-'l-'l-' FFFFFFFFFF al-'l-'l-'l-'l-'l-'l-'l-'l-'l-'
R Q; Q;
FFEFFEFE FEFEFE ot el i FEFFEE rrrrRrEr
Figure 4.1 Four clients launched from one machine connected over F2F

L4
Ld
L4
L4

Ld L
3 9890 B
L4 [

17

5. F2F in Educational Gaming

5.1 Educational Gaming

One of the most valuable skill of a good specialist is the ability to communicate. Surprisingly
this fact if often overlooked and many computer science students and other professionals
working full time with computers fail to express and share their thoughts with others.
Educational gaming [9] is aimed at promoting cooperation and collaboration between students
by providing an suitable environment for communication. The idea of the project is to use
computer games for learning. Dividing the students into groups and assigning each group a
certain goal requiring cooperation, active participation can be expected.

From the technical side this project brings up certain criteria that an environment has to meet.

Firstly a game has to be both fun and simple and also provide multi player capabilities.
Secondly there has to be enough room for cooperation in the game between players.

Bub's Brothers seems to be a suitable candidate for such a project. A modified version of the
game with specially designed levels has been created and called Mullivelled [3].

The gaming itself was successful however the technical synchronization and administration
proved to create a challenge. The gaming setup requires a new approach that would allow fast
and effortless environment creation.

5.2 Integration with F2F

The F2F framework can potentially solve the occurring problems. With F2F integrated into a
IM client for the playing to begin all it takes is to create a IM group and submit a game. With
such a setup users do not even have to have a copy of the game. It is important that users focus
only on the gaming and not pay attention to the technical side.

The idea to use F2F in educational gaming is purely theoretical at the current moment and no
experiments have yet been conducted. Before any testing can take place it is necessary for the
F2F to be integrated with the chosen IM client.

F2F computing has the potential to facilitate the setup of the gaming environment however
much work is still to be done in this direction.

18

6. Summary

Modern computers have much resources at their disposal. Average users however do not use
most of their resources in their daily computer activities. Using a framework integrated with
popular software such as an IM (Instant Messaging) client we can put some of that
computational power to work. A form of a grid can be constructed from the people in the
message list. Such a grid is different from the standard heavyweight high-end architecture
usually associated with the word grid. It possesses features of a Peer-to-Peer network and is
more dynamic. The framework that is aimed at achieving this goal is called Friend-to-Friend
(F2F) computing.

There is a lot of good software already written for all kinds of purposes. To use it on the F2F
platform it is necessary to either run the application inside the virtual machine or to use the
F2F Application Programming Interface (API). In the first case the program requires no
modification whereas in the second manual changes are necessary. For this thesis the game
called Bub's Brothers shall be modified to use the F2F API.

Bub's Brothers is a multi player arcade game written in Python. It is a remake of the popular
Bubble Bobble game released in the 80s. The game is a typical client-server architecture that
uses standard sockets to exchange data. A step-by-step description of the server and client
algorithms is provided. The game is well-written and uses strict folder structure to separate
networking, game logic and display.

I began moving the game to the F2F platform by identifying both the code that requires
substitution and the code that becomes unnecessary in the new application. The original game
server and client both have more than one socket opened for various purposes. All sockets
were removed and send/receive calls substituted with the corresponding F2F API equivalents.
Thus all messages are exchanged using only a single F2F channel. Some of the challenges that
came up during the modification process are considered along with their possible solutions.
Finally, I present a F2F-ready game with a description of the environment it was tested in.

Another modified version of the same Bub's Brothers game called Mullivelled has been used
for the Educational Gaming project at the University of Tartu. The project requires a platform
that would facilitate the game administration and synchronization between players. The
adapted version of Bub's Brothers will greatly simplify the adminstration tasks of Mullivelled
and achieve better game performance and experience.

19

Appendix A Source code

The source code of the project can be found at the following address:
http://ulno.net/f2f/interactive/bbros

The archive contains both F2FCore and F2FHeadless projects that can be easily imported into
Eclipse. The modified game itself is located in F2FHeadless/src/tests/bbgame. After importing
the projects into Eclipse, please follow the instructions at http://ulno.net/f2f/development to
configure the building process and run targets.

20

https://ulno.net/f2f/interactive/bbros
https://ulno.net/f2f/development

F2F baseeruvad vorgumangud
Bakalaureusetoo (4 ap)
Dmitri Melnikov

Resiimee

Ténapédeval tavakasutaja arvutil on olemas palju ressursse mida ta ei kasuta oma igapdevases
to0s. Tavaliselt aga peaaegu igaiihel on juba paigaldatud enamlevinud programmid nagu
veebibrauser ja kiirsuhtluse klient. F2F (Friend-to-Friend) raamistik annab ligipdésu sellistele
ressurssidele kasutades populaarseid suhtlusprogramme. Vorreldes Grid siisteemiga on F2F
diinaamilisem ja kergekaalulisem.

Tarkvara kéivitamiseks F2F platvormil on kaks vOimalust: virtuaalmasina sees voi kasutades
F2F API. Virtuaalmasina korral ei pea tarkvara muutma, F2F API nduab aga olemasoleva
koodi asendamist. Kuna F2F virtuaalmasin ei ole veel implementeeritud, keskendume teisele
variandile. T66 eesmérgiks on nididata kuidas saab rakenduse F2F platvormile iile viia Bub's
Brothers mingu niitel.

Bub's Brothers on multi-miingija arcade kus iiheaegselt saavad méngida kuni 10 mingijat.
Rakendus on kirjutatud Python keeles ja kujutab endast tiiiipilist client-server arhitektuuri. T66
annab iilevaade nii olemasolevast vorgukihist kui ka uuest F2F kihist. Uleviimise protsessil
tekkinud probleemid on lahti seletatud koos nende voimalike lahendustega. Lopus on toodud
valmis F2F rakenduse ja testimise keskkonna kirjeldus.

Bub's Brothers modifitseeritud versioon Mullivelled oli juba kasutatud iihe projekti raames
mille eesmiérk oli arendada tudengite koostddd. Projekt nduab platvormi millega saab kergesti
minge administreerida ja siinkroniseerida. Sellise platvormi realiseerimiseks on mdistlik
kasutada F2F vdimalusi.

21

References

[1] Friend-to-Friend (F2F) Computing. http://ulno.net/f2f

[2] The Bub's Brothers. http://bub-n-bros.sourceforge.net

[3] Mullivelled. http://ulno.net/algs/GameOrchestration

[4] Simplified Wrapper and Interface Generator, SWIG. http://www.swig.org
[5] Openfire Server. http://www.igniterealtime.org/projects/openfire/index.jsp

[6] Keio Kraaner. A Framework for Friend-to-Friend Computing. June, 2008

[7] F. Berman, G.C. Fox, and A.J.H. Hey. Grid Computing: Making the Global
Infrastructure a Reality. Wiley, 2003.

[8] U. Norbisrath, K. Kraaner, E. Vainikko, and O. Batrasev. Friend-to-Friend
Computing - Instant Messaging Based Spontaneous Desktop Grid. In The Third
International Conference on Internet and Web Applications and Services
(ICIW 2008), 2008.

[9] Ulrich Norbisrath, Ivar Minnamaa, Anne Villems, Kiilli Kalamees-Pani : Mullivelled -
Wrapping Computer Games into Educational Gaming Environments. Submitted and
accepted for International Gaming and Simulation Association Conference
(ISAGA 2008), July 2008, Kaunas/Lithuania

22

http://www.igniterealtime.org/projects/openfire/index.jsp
http://www.swig.org/
http://ulno.net/algs/GameOrchestration
http://bub-n-bros.sourceforge.net/
https://ulno.net/f2f

	U N I V E R S I T Y O F T A R T U
	Dmitri Melnikov

	F2F Computing as a Base for Network Games
	Bachelor's thesis (4 cp)

	Introduction
	1. The Bub's Brothers
	1.1 The Game
	1.2 The game architecture

	2. Client-server architecture
	2.1 Overview
	2.2 Bub's Brothers server
	2.3 Bub's Brothers client
	2.4 Bub's Brothers client-server interaction

	3. Friend-to-Friend architecture
	3.1 Overview
	3.2 Instant Messaging
	3.3 F2F framework
	3.4 F2F API for Python

	4. Moving to F2F
	4.1 General approach
	4.2 Challenges
	4.3 Resulting application

	5. F2F in Educational Gaming
	5.1 Educational Gaming
	5.2 Integration with F2F

	6. Summary
	Appendix A Source code
	F2F baseeruvad võrgumängud
	References

