
UNIVERSITY OF TARTU
Faculty of Mathematics and Computer Science

Institute of Computer Science
Speciality of Computer Science

Keio Kraaner
Friend-to-Friend Computing

Master Thesis (20 CP)

Supervisors: Ulrich Norbisrath
Eero Vainikko

Author: …………………………………….. “……“ May 2008
Supervisor: ……………………………….... “……“ May 2008

 Allow to Defense:
Professor ………………….… “……“ May 2008

TARTU 2008

Contents

1 Introduction 5

2 Related Work 9
2.1 BOINC . 9
2.2 JXTA . 10
2.3 JNGI . 11
2.4 Alchemi . 12
2.5 GridKit . 13
2.6 Turtle F2F . 13
2.7 NAT traversal . 13
2.8 Instant messaging . 14
2.9 Important concepts for F2F . 14

3 F2F Computing framework 17
3.1 Architecture . 17
3.2 Implementation . 19

3.2.1 Instant messaging connection 19
3.2.2 TCP connection . 20
3.2.3 UDP connection with NAT traversal 20
3.2.4 Skype connection . 21
3.2.5 JXTA connection . 21
3.2.6 Core of the F2F Computing framework 22
3.2.7 SIP Communicator GUI plug-in 22
3.2.8 F2F Computing GUI . 22

3.3 Roundup . 23

4 API and programmer’s guide 25
4.1 API for F2F application developer 25

4.1.1 Task . 26
4.1.2 TaskProxy . 27
4.1.3 Job . 28
4.1.4 Roundup for F2F application developer 29

4.2 API for the F2F Computing framework developer 30
4.2.1 F2FComputing . 30
4.2.2 F2FPeer . 30
4.2.3 F2FMessageListener . 32
4.2.4 PeerPresenceListener . 32

3

4.2.5 CommunicationProvider 33
4.2.6 TaskListener . 35
4.2.7 JobCreator . 35

4.3 MPI support . 36

5 F2F Computing framework in practice 37
5.1 Example F2F application: Distributed Blender 37
5.2 Starting an F2F application . 39
5.3 Rendering movie results . 43

6 Summary and outlook 45

A Source code 49

Bibliography 51

4

Chapter 1

Introduction

This master thesis is the result of my work during one year in the Distributed
Systems group of Eero Vainikko at the computer science department of the
University of Tartu. The main ideas of this work were first published in [24]
that I wrote together with Ulrich Norbisrath, Eero Vainikko, and Oleg Batrašev
(these are the persons to whom I refer as we hereafter). The most important
differences between this paper and my thesis are the sections 2.3, 2.4, 3.2.6,
3.2.7, 3.2.8, 5.1, 5.3 and the chapter 4.

Current trends in scientific computing and computational science show the
increase of the needs for more computational power. Some examples are large-
scale simulations in environmental and engineering science, pharmacy, and
chemistry. At the same time, computer architectures move more and more
toward distributed and multi-core processor architectures. Therefore, parallel
and distributed computing becomes more important. One way to facilitate
increased computational power is super computing or cluster computing.

Another way growing in popularity is Grid computing. Grid computing
means that several computers are used as one. It networks single computers,
servers, supercomputers, clusters and special devices into a global resource [13].
This approach enables to build a virtual supercomputer at a fraction of the
cost of traditional supercomputers.

The working principle of Grid computing is that a computational problem
(called job) that needs to be solved is split into small parts (called tasks),
the processing of each part is done on an individual computer, the results are
collected and combined into a solution of the problem. If the processing of the
tasks does not require any communication between them the problem is called
embarrassingly parallel.

Various frameworks exist to support Grid computing, like the Globus
Toolkit [14], UNICORE [18], or the Condor Project [28]. Grids that are based
on these frameworks network different computing centers, companies, and uni-
versities. These Grids work well but have a major drawback - they are very
heavyweight and complex. They need huge administrative capacities, just to
keep the Grid infrastructure running. If only a small job should be submit-
ted, this administrative overhead is not justified. The initial metaphor for the
computational Grid being as easy as a power grid is still unfulfilled [30].

5

For several years now, most of the world’s computing power is no longer
primarily concentrated in computing centers, companies, and universities. It
is distributed in hundreds of millions of PCs and other computer equipment
belonging to the ordinary people. The number of Internet-connected PCs is
growing rapidly, and is expected to reach 1 billion in 2008. Together, these PCs
could provide several PetaFLOPs of computing power. This, and the fact that
most of today’s PCs are heavily underutilized (typically less than 10% of their
processor power is used), and the ubiquity of the Internet has given birth to an
idea to connect usual PCs over the Internet into a global computing system.
Such a system is called desktop Grid. Previously mentioned frameworks are too
complex to be used in desktop Grids: people without information technology
(IT) background are not able to install these systems on their PCs.

A step to making networked computing power more accessible to the pub-
lic is public-resource computing (or volunteer computing) as proposed in the
BOINC [11] approach. It networks home-PCs to a centralized Grid. Famous
examples, using this, are SETI@home [12] and Einstein@home [5]. This ap-
proach is targeted at small research groups trying to solve problems which take
enormous computational effort in terms of computational time, usually need-
ing years to compute. BOINC makes it easy to donate computational power
to some project, but creation and management of such a project still needs
quite big administration effort.

To facilitate a public usage of Grids even more, we extend Grid computing
by using techniques from peer-to-peer (P2P) computing and instant messaging
(IM). IM is used by the vast majority of computer users. We assume that us-
ing IM techniques for the administrative part of setting up a desktop Grid will
open up Grid capabilities to the public. Imagine if you could use the power
of your MSN friends’ PCs to run an application much faster! If the simplicity
of forming social networks with mutual trust (to some level) in current IM
systems would be extended with the possibility to easily unite the computing
power of the participants within one social network, lots of people would have
access to a desktop Grid. Analogous to peer-to-peer computing, the here ap-
plied paradigm is called friend-to-friend (F2F) computing as a contraction of
Grid and P2P computing, and friends relating to the spontaneously formed
social networks. As a F2F Grid is formed with friends in the IM system, the
participants share some kind of trust and thereby authentication and autho-
rization issues can play a minor role. The F2F computing paradigm will enable
single researchers, very small research groups, and small companies to combine
their computational power with their friends or colleagues and to solve their
computationally intensive problems much faster than today. This paradigm
will probably have an impact on scalability of current Grid projects and will
yield results for simplified Grid application development. New F2F Grid ap-
plications, that become popular within masses, will widen the circle of Grid
users by ordinary people without any IT background.

My research was driven by implementing and evaluating the following ex-
ample scenarios:

1. Simulation Boost: A chemistry (further planned scenarios apply to fields

6

Keio Evelin KallePeeter

WLAN

MSN, Jabber (Googletalk),
Yahoo, ICQ, AOL, [Skype]

NAT

NAT

192.168.2.99192.168.4.11192.168.4.10 1.2.3.45

192.168.4.1

192.168.2.1

1.2.1.34

1.2.2.56

Jabber MSN Jabber Jabber MSN

Internet

Figure 1.1: Overview of a typical layout of a small social network

of mathematics, bio-informatics, physics, or biology) student needs to
run a simulation of a reaction. The student has to do this multiple times
with different input parameters. To accelerate getting the results, the
student asks colleagues and friends to share their computational power.

2. Dynamic Rendering Grid: The employees of a small movie studio want to
render a part of an animation movie (see for example Elephant’s dream
and Blender [6, 3]). To speed up this process they create in their IM
application a chat group and use the formed F2F Grid to carry out the
distributed rendering task.

The goal of my work behind this thesis was to implement the first version of
a framework that would support F2F computing. This framework is called
F2F Computing. The main focus was to get the basic functionality of the
framework working. This involves the ability of starting up the F2F Com-
puting framework, forming a F2F Grid together with the job submission and
communication capabilities between different Grid nodes and tasks. I have
not dealt deeply with the issues of security, heterogeneity, and other issues
except the base functionality of the framework. My main goal is to demon-
strate the simplicity of this lightweight Grid implementation and application
development.

In this work I will look at the example network setup depicted in Fig-
ure 1.1. It shows the connections between the computers of four people. Keio
and Evelin are wirelessly connected via a network address translation firewall
(NAT) to the Internet. Peeter has an Ethernet connection via a different NAT
to the Internet and Kalle is connected directly (for example via a dial-up) with-
out firewall to the Internet. They all have access to the global chat servers
located in the Internet. Keio uses two instant messaging protocols: Jabber and

7

MSN. Evelin and Peeter use only Jabber. Kalle uses only MSN. This means
that Keio can chat with all other three participants, but Kalle cannot chat
with Evelin and Peeter. For the rest of the thesis I imagine that Keio needs
to run a computationally intensive task - render a movie - and wants to run it
together with Evelin, Peeter, and Kalle.

The thesis is structured as follows. Chapter 2 will give an overview of cur-
rent desktop Grid systems and P2P related techniques, which guided the proto-
typing of the F2F Computing framework. Chapter 3 will cover the architecture
and the implementation details of the framework. Chapter 4 will describe the
application programming interface (API) of F2F Computing framework and
guides how to use it. Chapter 5 describes how to use the framework in practice
and my current experience with it. As the current version of the F2F Com-
puting framework is far from being complete, I conclude this work with the
summary of current state and directions for further improvements.

8

Chapter 2

Related Work

This section will give an overview of current desktop Grid systems and P2P
related techniques, which guided the prototyping of a new lightweight P2P
Grid framework. It will explain the main concepts of these approaches and
how they influenced the decisions in the development of the F2F Computing
framework.

2.1 BOINC

BOINC (Berkeley Open Infrastructure for Network Computing) [11] is a non-
commercial desktop Grid platform that enables the creation and management
of computational intensive projects to which ordinary PC owners can do-
nate cycles of their processors. It is the generalization of the SETI@home
project [12]. BOINC’s computational model is very simple and based on a
flat client-server architecture: a BOINC Grid has a central server that main-
tains small independent units of work (tasks) of an embarrassingly parallel
compute-intensive project and serves the tasks to voluntary contributors who
process them and return the results to the server. PC owners are able to
configure which resources and how much they contribute. BOINC deals with
batch-processes and does not allow communication between the workers.

BOINC is one of the first projects that successfully uses home computers
to solve computational intensive problems. To facilitate the use of home com-
puters for solving these kind of problems is also one of the goals of my thesis.
To achieve a high number of participants in a particular project, incentives are
used. On the one hand, the advertisement of the good and valuable nature of
the problem to solve is important. On the other hand, BOINC also introduces
a credit point system for the participants to prove their share in the solution
of the problem and allows comparison to other participants. These incentives
are essential in gaining people’s interest in participating. In F2F Computing
approach, these incentives will be provided via wanting to help a friend and
being convinced to do this with an initial chat to advertise the need for solving
the problem together. Like in BOINC, the configuration of shared resources
has to be taken into account in F2F Computing.

In BOINC users must entrust their computers to the big institution where

9

code and computation data is received from. For preventing malicious code
execution by a server intruder all executables are signed by the private key,
which must be stored separately. Sandboxing is not provided, but BOINC may
determine that the application is using too much memory or disk space and
interrupt it. To ensure that returned results received by the server are correct
and to forestall failure of workers, BOINC supports redundant computing -
one task is sent to multiple workers, and a canonical result is selected by the
server.

Even, if BOINC claims to be a P2P project, it is definitely a client-server ar-
chitecture. A communication between nodes is not possible. The architecture
is not a random network; it is a star. In F2F Computing, server infrastructure
is only used to do connection topology detection and as the last way to have
a connection between Grid nodes if direct P2P communication is not possible.
Furthermore, only already available and reliable servers that are maintained by
big IM providers may be used. Because of this, there will be no administrative
overhead.

2.2 JXTA
Sun Microsystems started the JXTA project (derived from the word juxtapose:
examine side by side, collate) in 2001 to make an open P2P communication
platform that would support and simplify the development of distributed ap-
plications [15]. JXTA is a set of protocols that define simple overlay networks
on top of physical networks. Sun provided the first implementation for Java,
which is now developed by the JXTA Community. It can be used to create P2P
solutions written in Java. It allows the creation of dynamic virtual networks
in which different resources can be published and searched.

JXTA’s goal is to enable any inter-connected computers to collaborate and
exchange messages independently of the underlying physical network topology
in a decentralized manner by providing a simple overlay network on top of the
physical network. It defines several protocols which have the core abstractions
peer, peer group and pipe. A peer is a node that is connected to the JXTA’s
network; it is identified by an unique ID. Peer groups are logical collections
of peers sharing some kind of common interest. A peer may simultaneously
belong to several peer groups. Figure 2.1 shows the JXTA’s overlay network on
top of the physical network. Pipes are virtual uni-directional communication
channels with an unique ID. Pipes are used for exchanging messages between
peers. They may be unreliable like UDP or secure and reliable like tunneled
TCP connections are. Protocols determine how peers, groups, or pipes can be
discovered, how messages can be exchanged, and how groups and pipes can be
managed. The JXTA project provides implementations of its protocols in C
and Java.

JXTA’s possibility to offer a unique network layer on top of nearly every
available other network layer including any kind of P2P connections would
be just the right technology to use for the F2F Computing communication.
Due to problems described in section 3.2.5, I could only use JXTA’s concept

10

Peer 2

Peer 3
Peer 1

NAT/firewall

Internet

Wi-Fi router

Peer group 2Peer group 1

Pipe 1 Pipe 2

Figure 2.1: JXTA concepts: peers, groups, and pipes

as an inspiration and had to freeze the efforts to use JXTA as a connection
provider in F2F Computing framework. Nevertheless, it is worth to keep an
eye on JXTA because its concept is great, and should be taken into use if its
implementation will improve.

2.3 JNGI

JNGI [9, 29] is a P2P desktop Grid framework that is robust, dynamic and
scalable. Its idea is to form spontaneously a global virtual supercomputer.
Everybody should be able to contribute to this supercomputer. Everybody
should be able to use this supercomputer. This should be possible very con-
veniently, without big administrative overhead.

JNGI is based on JXTA (see section 2.2), and it contains the following types
of peer groups: monitor group, worker group and task dispatcher group. A
node can belong to multiple groups and there may be several instances of peer
groups in the JNGI’s Grid. The monitor group is coordinating the operation
of the Grid in the most general level. It analyses the Grid all the time and
dynamically assigns positions to the peers so that the Grid would work in the
best possible way. The monitor group decides what position should a new
peer have, addresses responsibilities of peers which are not doing their work
well or have left the network to other peers, and decides where a job should
be executed. The worker group is the place where a job is being executed.
Each worker group contains the task dispatcher group which distributes tasks
to worker peers and communicates with job submitters to receive new tasks
and return processed tasks. For better reliability all the information in the
Grid is replicated and distributed between several nodes, so nothing is lost if
a node crashes.

JNGI provides a simple API for developing embarrassingly parallel appli-
cations that can be run on the Grid. The idea of the framework is really great
but it did not get popular because its realization relies entirely on JXTA and
contributors have no control how given resources are used (one can not limit

11

who or which applications can use the resources and how much of them can be
used; contribute nothing or everything), and the project is not alive since 2004.
I tried to get the framework running, but failed because of some dependency
problems I could not resolve.

The simplicity of JNGI’s API and the ideas how easy it should be to use
the Grid are the points that are essential for the implementation of F2F Com-
puting. JNGI’s dynamic nature is something that should be considered in
F2F Computing. Also, JNGI is a good example that shows that if a desktop
Grid is not secure and configurable it will not be used. Therefore these issues
definitely have to be tackled in the F2F Computing.

2.4 Alchemi

“Alchemi is a .NET-based framework that provides the runtime
machinery and programming environment required to construct
desktop Grids and develop Grid applications. It allows flexible
application composition by supporting an object-oriented appli-
cation programming model in addition to a file-based job model.
Cross-platform support is provided via a web services interface and
a flexible execution model supports dedicated and non-dedicated
(voluntary) execution by Grid nodes” [22].

Alchemi [1] uses a master-worker pattern of parallel computing. Worker nodes
get tasks from a central server node. To protect the system from malicious
users, Alchemi uses a role-based security model. The server node maintains a
list of permissions that represent different activities which have to be secured,
a list of roles which contain a set of permissions, and a list of users with any
number of roles. If a user application wants to perform an activity that needs
to be authorized, it must provide a user name and a corresponding password.
If the given credentials are valid (the name and password match) and the user
has a role that contains the particular permission, the requested activity is
performed, otherwise not. The principles of this security model are worth to
be considered when designing the security model for F2F Computing.

One goal of Alchemi is to ease the development of new Grid applications.
Alchemi provides a .NET API which can be used by developers to fulfill this
goal. I have used the following idea from Alchemi’s API while designing the
API of F2F Computing: Grid tasks can be initialized with input data before
sending them to the friends’ machines for execution, which lowers the com-
munication needs between the tasks. Alchemi supports Grid-enabling legacy
applications. This is also a functionality that is worth to be supported by the
F2F Computing framework.

The setup of an Alchemi-based Grid is not very simple. The server and
worker nodes have to be installed and configured carefully. This is hard for
non-IT people. The F2F Computing framework is supposed to make this step
easier.

12

2.5 GridKit

The lightweight Grid middleware GridKit, proposed in [16] deals with highly
heterogeneous and (re)configurable interaction paradigms patterns and net-
working technologies in future Grids. The core of GridKit contains an inter-
action framework and an overlay framework. The interaction framework is
an environment for pluggable interaction paradigms that interface with the
pluggable overlay networks in the overlay framework.

In the F2F Computing framework, heterogeneous protocols for communica-
tion (different communication providers) are used but the framework does not
have plug-in architecture. In the future, developers of the framework might
look at the configuration and reconfiguration strategies, support for different
communication patterns, and support for different programming languages (us-
age of OMG IDL in the framework’s API) that is done by the GridKit. At the
moment, support for different operating systems is bound to the fact that the
F2F Computing framework is written in Java.

2.6 Turtle F2F

Another project that uses the friend-to-friend term is Turtle F2F [26], which is
designed as a secure environment for friends to exchange information. Turtle
F2F is intended mainly for the safe sharing of sensitive data in a P2P man-
ner, aiming to support mainly the right to freedom of speech. The similarity
with my use of the term F2F is that trust relationships between pre-existing
friendship peers are used as basis for their secure network. The difference with
the F2F concept that is described in this thesis is that anonymity built into
their system has nothing to do with the friend relationships we have in mind.
Turtle F2F does not use IM either.

2.7 NAT traversal

Direct P2P communication across network borders can be very difficult. Espe-
cially if the connection should cross multiple network address translator devices
(NATs). Compare, for example, the connection from Keio to Peeter in Fig-
ure 1.1. To make a direct connection between their computers two NATs have
to be crossed. Neither Keio’s nor Peeter’s computer have a public IP-address.
The technique enabling this crossing is called NAT traversal. There are vari-
ous approaches, which describe this technique. The most complete document
at the moment collecting these is the Interactive Connectivity Establishment
(ICE) draft [27] that is developed by the Internet Engineering Task Force’s
(IETF) Multiparty Multimedia Session Control working group. Unfortunately
I could not find any suitable library that would provide NAT traversal for F2F
Computing framework, thus this functionality has to be implemented.

13

2.8 Instant messaging

IM describes a form of real-time communication between two or more (usually
two) persons. In contrast to emails, messages are delivered immediately. Also
the availability of the parties is usually visible. Received messages are cached
in a local cache and can be read later if the receiving party is not currently
near the receiving computer. IM is usually offered by a service provider as
messages are usually sent to its server infrastructure and then forwarded to
the respective receiver client. Some examples of these service providers are
Microsoft with MSN Messaging, Yahoo with Yahoo! Messaging, Google with
Googletalk (which is actually Jabber), or Skype with Skype chat. Nevertheless,
there are also P2P IM solutions not dependent on a central server infrastructure
(like the old Unix-talk). These have usually a much smaller user base than the
big ones formerly mentioned.

The applications allowing access to the IM networks are called IM clients.
There are clients which allow only access to one IM network like the MSN
Messenger or multi-protocol clients like Miranda, Trillian, or Pidgin (for a
comparison of IM clients see this Wikipedia page [4]). A remarkable multi-
protocol client is SIP Communicator [19], which supports like Skype also Voice
over Internet Protocol (VoIP). It supports popular IM and telephony protocols
such as SIP, Jabber, AIM/ICQ, MSN, Yahoo, Bonjour, and IRC. SIP Com-
municator is a free open source project initiated by Emil Ivov at the Louis
Pasteur University in Strasbourg, France. It is developed completely in Java.
As it is based on the OSGi [25, 2] component framework, it is very easy to
extend it with new plug-ins. These are the reasons why SIP Communicator
was the IM application that was chosen to be used in the F2F Computing
development. Also being developed in Java it facilitates the deployment of
distributed interoperable Java applications.

2.9 Important concepts for F2F

Our main idea is to use IM as a triggering distributed application for setting
up a computational Grid between friends, which should minimize the admin-
istrative efforts. The installation of an F2F-compatible IM client program and
forming a chat group with the friends should be all that is needed to set up
a Grid. The resulting environment is called an F2F Grid (or, abbreviated,
frid), which allows quickly to start parallel applications. The creator of the
frid starts an F2F application and each peer has to answer a simple question:
“Do you allow {alias of your friend} to use your PC?” (it should be possible to
configure the system so that this question is answered automatically in some
cases (for instance you might want to allow your best friend to use your PC
always)).

Another important concept is the ability of computing nodes to interact
via sending and receiving messages. This opens a door for much wider class
of distributed applications than simply embarrassingly parallel computations
tackled by most of the existing desktop Grid solutions so far. Distributed ap-

14

plications that involve P2P communication can be developed. An IM protocol
is used for starting up the connection between Grid nodes, but the communica-
tion channels are built up thereafter independently using the fastest available
protocol, with the option to use even NAT traversal methods.

The choice of the Java based free SIP Communicator allows rapid proto-
typing of heterogeneous Grid applications. Also its extensibility and multi-
protocol support simplifies the development of the F2F Computing framework
a lot.

To ease the development of applications that can be run on top of the F2F
Computing framework, it is essential to provide a simple but powerful API that
is well documented. The API should allow the usage of different programming
models like Alchemi (see section 2.4), and support various interaction patterns
like GridKit (see section 2.5).

The security and configuration issues have to be dealt with, otherwise the
F2F Computing framework will not be accepted by the wider public. Owners
of PCs should have precise control over their resources at any moment like
in BOINC’s approach (see section 2.1). Java may be helpful in providing
a sandbox environment by limiting access to certain resources, or even our
own virtual machine might be developed. The trust between friends may be
something that can be used while dealing with the security issues. We trust
our friends, but even they can have bugs in their code.

The framework should provide the functionality that helps applications
to survive the failure of some nodes. It may include replication of tasks so
that one task is running on more than one node at a time, and checkpointing
and recovering the states of this task. This thesis does not cover the fault
tolerance, security, and configuration matters, therefore the next versions of
the F2F Computing framework should handle them.

This thesis focuses on getting the basic functionality of the framework work-
ing. This involves the ability of starting up the F2F Computing framework,
forming a frid together with the job submission and communication capabilities
between different frid nodes and tasks.

15

16

Chapter 3

F2F Computing framework

This section will cover the architecture and the implementation of the F2F
Computing framework.

3.1 Architecture

For the following description please refer to Figure 3.1. The framework consists
of three layers: communication, computation, and application. The communi-
cation layer provides the connection that is used to exchange messages between
the nodes in a frid. The core functionality is located in the computation layer
that uses communication layer. The computation layer provides abstractions
for F2F Computing applications in an interface, called the F2F Computing
API. It provides access to the concepts Peer, Job, and Task. For a closer look
at these concepts see Figure 3.2.

A Peer corresponds to the entity in control of one of the users participat-
ing in solving a respective computational task. If Keio and Evelin would like
to compute a problem together and both of them are logged in to their IM
application on one computer each, it makes sense to regard Keio’s computer as
one Peer and Evelin’s as the other one. The relation between different Peers is
called is friend, as in our example of the social network between Keio and
Evelin; these are regarded to be the friends who have the ability to do F2F
computing together. The problem Keio and Evelin want to compute together
is the Job. One of the both can create this Job (or also multiple Jobs - re-
gard the is created by-relation in Figure 3.2). The executed parts making
up a Job are called Tasks. This means the Job consists of (compare associa-
tion consists of in Figure 3.2) multiple Tasks which run on (see association
runs on) specific Peers. Each Peer has information about the Jobs (compare
the knows-relation) which have at least one Task running on the Peer.

The main functionality the API has to provide for the application layer is
the following:

• create a new Job;

• submit the Tasks forming this Job into specific Peers;

17

Application
layer

Computation
layer

Communication
layer

F2F Computing
GUI

SIP Communicator
GUI plug-in

(multi-protocol chat)
F2F applications

SIP Communicator
Instant Messaging

MSN
ICQ
Jabber

YAHOO
AOL
(Skype)

TCP
IPv4

UDP
IPv4 (JXTA)(Skype)

F2F Core

Peer
Job

Task

 F2F Computing API

(IPv6)

Figure 3.1: F2F Computing architecture

Peer

is friend

Job

Task

is created by

knows

runs in

consists of
*

*

*

*

*

*

*

1

1
1

Figure 3.2: Relations between peers, jobs, and tasks

18

• work out the ability of the Tasks to exchange messages.

Chapter 4 will describe the F2F Computing API in detail.
On the communication layer are the different connection providers via

which the F2F Computing can operate. The first communication channel
is over IM protocols and this is provided by IM connection provider that is
based on SIP Communicator (see section 3.2.1). SIP Communicator itself al-
ready supports the usage of MSN, Yahoo, ICQ, AOL, Jabber and many more
protocols. The design is planned so that the connection providers can be ex-
changed on the fly; the framework uses always the best available connection
provider. This is reasonable because the IM connection is usually very slow
and a more direct connection is preferable. The easiest case is just to switch to
a TCP-IP socket connection as it would be possible between Keio and Evelin
or between Kalle and anybody else shown in the initial Figure 1.1. For a fast
and efficient connection between Keio and Peeter, there needs to be a hole
punched in either the NAT 1.2.1.34 or the NAT 1.2.2.56. This is supported by
the UDP connection provider (see sections 2.7 and 3.2.3). Alternatives here
are the usage of connection providers that make use of technologies like Skype
(see section 3.2.4), which uses hole punching itself, JXTA (see section 3.2.5),
or later IPv6. However, any other connection provider could be plugged in
here, making F2F Computing easily extendable with new technologies in the
future.

On the application layer are the programs that make use of the F2F Com-
puting API. These are the F2F Computing GUI, the SIP Communicator GUI
plug-in, and the F2F applications implementing the Jobs. The F2F Computing
GUI is described in section 3.2.8. The SIP Communicator GUI plug-in is pre-
sented in section 3.2.7. It is an OSGi-based multi-protocol group chat plug-in
that provides connection between SIP Communicator and the F2F Computing
framework (for the description of the plug-in development for SIP Communi-
cator compare the developer documentation on [19]). A simple example of the
implementation of an F2F application is given in section 5.1.

3.2 Implementation

This section describes different ways and techniques that are used in the imple-
mentation of the F2F Computing framework. The main focus is on describing
the different connection types of the communication layer between the peers.
Each type of connection has a priority and the framework uses the connection
with the highest priority.

3.2.1 Instant messaging connection

The first communication channel between two peers is via some IM protocol
that is supported by the SIP Communicator (like MSN, Jabber, or ICQ). I
wanted to use the IM channel for exchanging the F2F Computing framework
messages between the peers. To achieve this, I implemented a solution that

19

serializes the framework messages and surrounds them with a special XML tag.
In this form the messages can be sent via the IM channel like ordinary chat
messages. The solution includes a filter mechanism for SIP Communicator
which filters out the messages with the tag, and forwards them to the frame-
work. This communication channel ensures that, if friends see each other in
their contact list as online and can chat, the F2F Computing framework can
exchange messages between these peers. Of course the framework tries to
establish a better link between the peers. This will be covered in the next
paragraphs.

3.2.2 TCP connection

When the first communication channel to a remote peer has been established
(this is momentarily the IM connection, but it could be any other type of
connection theoretically), the framework tries to create the TCP connection
between the local and the remote peer. The used algorithm is the following:

• (preconditions) peers A and B know their local IPs and are listening on
a port on each IP (peer A on sockets A.IP1:P1, ..., A.IPn:Pn, and peer
B on sockets B.IP1:P1, ..., B.IPm:Pm);

• A and B exchange the information about the sockets that they are lis-
tening on over the existing communication channel;

• both try to make a socket connection to the remote peer in parallel (m
threads start doing this on peer A, and n threads start doing this on peer
B);

• each peer selects the first valid connection that is made or none if all the
tries fail;

• and, if both peers succeed, they agree which connection will be used
finally.

The TCP connection has higher priority than a IM connection, meaning that
if a peer is contactable via TCP and IM channels TCP is used.

3.2.3 UDP connection with NAT traversal

When the first communication channel to a remote peer has been established
(this is usually the IM connection, but it could be any other type of connection
theoretically), the framework tries to create also the UDP connection to this
peer. Artjom Lind has designed and implemented the NAT traversal module
that tries to establish a UDP connection between peers. His work is described
in detail in [21]. In general, the following algorithm is used:

• (preconditions) peers have gathered their STUN info;

20

• peers exchange their STUN info over the existing communication chan-
nel;

• based on the data in the STUN info the peers decide if the traversal is
possible and how it is exactly done (it depends on the types of used NAT
and firewall devices).

On top of the UDP connection provided by the NAT traversal module I im-
plemented a layer guaranteeing the reliability of the connection. There is still
work to do to optimize package size and transmission rate. The UDP connec-
tion has priority which is higher than the IM connection but lower than the
TCP connection.

3.2.4 Skype connection

When I started to implement the F2F Computing framework the SIP Commu-
nicator was not used. Instead of this, Skype was used as the provider of social
networks (friends) and the communication channel. This was achieved with
the usage of the Skype API in the communication layer. This proved that a
frid can be composed on top of a Skype network. But as the licensing issues
with the Skype API are not very simple, the development that uses the Skype
API was freezed until the licensing issues are fixed. Licensing issues are solved
now. Still problems with Linux adapter. However, the student Janno Toots is
trying to solve these problems in his bachelor thesis.

3.2.5 JXTA connection

When I started to use the SIP Communicator as the provider of social net-
works, at first I tried to use the JXTA community Java implementation for the
connection provider. Unfortunately, setting up the JXTA infrastructure is not
straightforward and requires knowledge of the network topology. Without in-
termediate nodes (rendezvous peers), JXTA is unable to traverse NATs, which
is a necessity for the F2F Computing framework. Due to the lack of concise
examples and an up-to-date tutorial, programming with JXTA was a very time
consuming and error prone process. When I was dealing with JXTA, the tuto-
rial was for JXTA release 2.3, the stable release was version 2.4, and examples
where only available from the source repository for the unstable 2.5 version.
The complex JXTA architecture and protocols made understanding failures
and debugging new code very difficult. Additional difficulties arose even using
JXTA within the same local network: initialization of connections took up to
60 seconds and would fail often. The problems with JXTA apply also to other
projects. One of them is Xeerkat [10] which finally replaced JXTA with the
XMPP (the successor of Jabber) communication protocol. Because of the ex-
perienced unreliability and the complexity of the JXTA project the efforts on
using JXTA in the communication layer of F2F Computing framework were
frozen, and I started to introduce the IM, TCP and UDP connection providers.
Nevertheless, it is worth to keep an eye on JXTA because its concept is great,
and should be taken into use if its implementation will improve.

21

3.2.6 Core of the F2F Computing framework

As described in section 3.1 the core functionality of the F2F Computing frame-
work resides in the computation layer which provides access to the concepts
Peer, Job, and Task via the F2F Computing API (see Figure 3.1 and Fig-
ure 3.2). Besides the main functionality (see the listing in section 3.1) the
computation layer provides some features that make it flexible and extend-
able. The design is planned so that any module, that may be developed and
added later, can easily send and receive custom messages between Peers. A
module can register itself with the framework to listen for the specific type of
messages, and if such a message is received it is forwarded to the module. For
instance, the TCP and the UDP communication modules use this approach to
exchange the data that is needed to run the processes that test if the respective
connection can be established. Additionally, a module can listen to the events
when a Peer becomes online or goes offline, and when a task starts or stops
running. More detailed description of these features can be found in section 4.

3.2.7 SIP Communicator GUI plug-in

The SIP Communicator GUI plug-in is the tool which allows to create a frid
in an intuitive way. This plug-in allows to create multi-protocol chat rooms
(meaning that contacts via different kind of IM protocols can take part in one
chat room) and enables the creator of the chat room to run an F2F application
with the help of the participants of the chat room (of course, the participants
have to allow this application to be run on their PCs, as already mentioned
in section 2.9). Only the creator of the chat room can add new contacts
to the chat room. If he/she tries to add a contact to the chat room the
framework checks if this contact is F2F-capable, and if the checking succeeds
(the is friend-relation is made, see Figure 3.2) the friend is invited to join the
chat room. If the creator has gathered all the wanted friends to the chat room
he/she can start the desired F2F application in the following simple way: open
the dialog in which the F2F application has to be specified and start it. This
process is described more deeply with illustrating screen-shots in section 5.2.

3.2.8 F2F Computing GUI

For the following description please refer to Figure 3.3. At the beginning of
the project the F2F Computing GUI was meant to be the application that
allows users to start F2F programs. The idea to use the group chat window in
SIP Communicator came up in a later stage of the project. At this point this
functionality was removed from the F2F Computing GUI. The main purpose
of the GUI at the moment is to show different kind of debugging information
(in the logs and the F2F activities tabs, plus in the window that can be opened
from the View menu) and the state of tasks running on the local machine (in
the Tasks tab). Additionally, from the Tasks tab the user can interrupt the
tasks by stopping them. The Friends section in the GUI shows these friends
which are detected by the framework to be F2F-capable. From the Options

22

Figure 3.3: F2F Computing GUI

menu the users can select if their friends are allowed to use their PC by default
(if the user chooses to allow, the pop-up message that asks for the permission
is not shown each time a friend starts an F2F application).

In the future the F2F Computing GUI should be developed to be the tool
that shows rich monitoring information like state of tasks and the resources
they use (CPU, RAM, hard disk, network bandwidth), network and application
topology. Also, the GUI must allow the PC owners precisely to configure and
control the resources that are made available for the friends.

3.3 Roundup
This chapter was explaining the concepts used for the F2F Computing frame-
work in detail. It showed the architecture, explained in detail the different
connection types, which are possible in the framework, and presented the GUIs
I have implemented. To avoid confusion, it should be mentioned again, that
security and configuration issues are not part of this work and will be included
in later versions of the framework.

23

24

Chapter 4

API and programmer’s guide

This section describes the API of F2F Computing framework and guides how
to use it.

4.1 API for F2F application developer

The F2F Computing framework supports programs that are implemented us-
ing a master-slave programming paradigm [20]. As described in section 3.1 a
computational problem that friends want to compute together is called the
job. A job is created if an F2F application is started. The process of starting
an F2F application is described with illustrating screen-shots in section 5.2.
A job may contain several tasks and each task may be running on a different
computer. The master-slave programming model considers one of these tasks
to be special. This special task is called the master task, and others are called
slave tasks. The master task is the first task that is started if a new job is
created. It runs on the job creator’s node. The purpose of the master task
should be the creation of slave tasks, the distribution of initial data (prepa-
ration of slave tasks), and the end-result assembly. The intention of the slave
tasks should be to calculate parts of the end-result and to return them to the
master task.

For example, if Keio starts an F2F application to render a movie which
consists of 120 frames together with Evelin, Peeter and Kalle (see Figure 2.1),
the application might work in the following manner: The master task of the
application is started in Keio’s computer. The purpose of the master task is
to divide the rendering job between slave tasks, which render different parts of
the movie, to execute these tasks on separate nodes, gather the rendered movie
clips and join them into the final movie. Therefore, the master task creates
four slave tasks - the first one in the same computer (meaning that the master
task and one slave task will be running on the same machine), the second one
on Evelin’s computer, the third one on Peeter’s computer, and the fourth one
on Kalle’s computer. After this, the master task sends rendering input data
to the slave tasks and tells to each slave task which frames it should render -
the first slave task should render frames 1 to 30, the second slave task should
render frames 31 to 60, the second slave should render task frames 61 to 90, and

25

the fourth slave task should render frames 91 to 120. The slave tasks render
the movie clips, send them to the master task, and the master creates the
desired movie from them. A pseudo implementation of this F2F application
is described in detail in section 5.1, and the according real implementation is
given in Appendix A.

The F2F Computing API provides several Java classes that form the base
on top of which F2F applications can be built. The following sections describe
these classes.

4.1.1 Task

The Task (the exact class name is ee.ut.f2f.core.Task) class is the base
class for all tasks that can be run by the F2F Computing framework, both
master and slave. This class represents the Task concept described in sec-
tion 3.1. Technically a task is a thread which is started by the framework,
therefore the Task class extends java.lang.Thread class. By extending the
Task class and implementing the runTask() method one can create an F2F
application. An F2F program must contain at least the implementation of the
master task. The number of different types of slave tasks in an F2F program is
not limited. The most important methods of the Task class are the following:

• void runTask()
This is an abstract method which is invoked by the framework if the
task is started. Its realization should describe the steps of the task’s
algorithm. This is the place to where one can put their code and let it
be executed by the framework.

• boolean isStopped()
This method returns true until the framework allows the task to run. If
this method starts to return false the task should exit the runTask()
method and stop all the sub-threads it has started. For instance, this
method starts to return false after a user has chosen to stop the task
from the F2F Computing GUI (see Figure 3.3).

• void taskStoppedEvent()
This method is called by the framework if the task should stop running.
At the same time the isStopped() method starts to return false. This
method should be overwritten if the task wants to react quickly (which
is polite) on the event that asks it to stop.

• void setProgress(int progress)
Often the user of an F2F application wants to know the progress of
the application. The progress should indicate how much of the task
is completed. The value of the task’s progress can be asked via the
getProgress() method; the default progress value is -1. This method
sets the progress value of the task equal to progress and informs the
listener objects (described in section 4.2.6) which are interested in this
kind of events. The Tasks tab in the F2FComputing GUI (see Figure 3.3)

26

is one of those listeners. It interprets the value of tasks progress in the
following way: the value less than 0 means the progress is not determined
(the GUI does not show the progress bar in this case), the value from 0
to 100 means the task is 0 to 100% completed (the GUI shows according
progress bar), the value greater than 100 is considered equal to 100.

• String getTaskID()
This method returns the unique identification (ID) of the task. Each
task has the unique ID in the job. At the moment the framework gives
IDs to tasks by the following algorithm: the master task has ID "0" and
the slave tasks have IDs from "1" to "N", where N is the number of slave
tasks. The ID is used for communication and for debugging.

• TaskProxy getTaskProxy(String taskID)
This method tries to return a proxy to a remote task which ID is taskID.
If the proxy to the remote task is asked the first time, it is created and
saved for later use. The framework checks if a task with the given ID
exists (in the context of the job this task belongs to) and then returns
the proxy to it; if such a task does not exist, null is returned. The
TaskProxy class is meant to be used to exchange messages between the
tasks; it is described more in section 4.1.2.

• void messageReceivedEvent(String remoteTaskID)
This method is called by the framework if a message is received from
a remote task with the ID remoteTaskID. The message can be read
from the corresponding task proxy. An implementation of the Task class
that wants to be notified about incoming messages should overwrite this
method and take the actions it wants (probably read the message and
process it).

• Job getJob()
Each task is part of a job, like described in section 3.1. This method
returns the job this task belongs to. The Job class is described in sec-
tion 4.1.3.

4.1.2 TaskProxy

The TaskProxy (the exact class name is ee.ut.f2f.core.TaskProxy) class
represents the link between two tasks. It should be used to send/receive mes-
sages to/from the task. The received messages are being held in a FIFO queue
until they are read. For example, lets assume that task A is running on Keio’s
node and task B is running on Evelin’s node and they are exchanging mes-
sages. In that case, the task A holds a proxy to the task B and the task B
holds a proxy to the task A, and they are using these proxies to exchange the
messages. The most important methods of this class are the following:

• String getRemoteTaskID()
This method returns the ID of the task to which this proxy links to. The
proxy that the task A holds returns the ID of the task B.

27

• void sendMessage(Object message)
This method tries to send the message object to the corresponding task.
The message object has to be serializable. This method just sends the
message out and returns. It means that it does not guarantee that the
message has reached the destination task.

• void sendMessageBlocking(Object message)
Like previous method this method tries to sends the message to the
corresponding task. The difference is that this method blocks until the
receiver has got the message. This means the method waits until the
framework has made sure the message has reached the destination ma-
chine and can be read by the destination task.

• Object receiveMessage(long timeoutInMillis)
This method should be used to receive a message from the corresponding
task. If the task A wants to read a message from the task B, it may use
this method to do this. The parameter timeoutInMillis defines the
timeout (in milliseconds) how long the method should wait if a message
has not been received yet; 0 or negative value causes the method to wait
until a message is received. The method returns the first message from
the incoming message queue (and removes it from the queue) or null if
there are no messages after the timeout.

• Object receiveMessage()
This method is equivalent to the invocation of receiveMessage(0).

• boolean hasMessage()
This method returns true if there is at least one message received from
the task which this proxy belongs to, otherwise false is returned. If the
task A wants to read a message from the task B, it may use this method
of the proxy to the task B to check if there are any messages to read.

• int getMessageCount()
This method returns the size of the incoming message queue. If the task
B has sent 3 messages to the task A and the task A has not read any of
them, and the task A invokes this method of the proxy to the task B,
it should return 3. If the task A then reads one message and calls this
method again, it should return 2.

4.1.3 Job

The Job (the exact class name is ee.ut.f2f.core.Job) class represents the
Job concept described in section 3.1. The purpose of this class is to hold the
jar-files that are needed for the tasks of this job, to keep track about the tasks
that make up the job and in which peers they are running, and to allow the
master task to submit new tasks. The most important methods of the Job
class are the following:

28

• Collection<F2FPeer> getPeers()
This method returns the collection of peers who were present in the group
chat when the job was started. These are the peers into which the mas-
ter task of the job may submit the slave tasks with the submitTasks()
method (if the peers allow to use their PC). The F2FPeer class is de-
scribed in section 4.2.2.

• String getMasterTaskID()
This method returns the ID of the master task of the job. This ID can be
used to get the proxy to the master task using the Task.getTaskProxy()
method.

• Collection<String> getTaskIDs()
This method returns the IDs of all the tasks this job consists of. The
IDs can be used to get the proxies to the corresponding tasks using the
Task.getTaskProxy() method.

• void submitTasks(String className, int taskCount,
Collection<F2FPeer> peers)
This method of a job is one of the two methods that can be used to
submit new tasks to the job. I mention again that only the master
task of the job may use this method; if a slave task tries to submit
new tasks an exception is thrown. The parameter className defines
the name of a Java class implementing the Task class. The parameter
taskCount defines the number of new tasks the master wants to submit.
The parameter peers defines the collection of peers in which the new
tasks should be executed. The peers collection has to be a subset of
the getPeers() return value, meaning that tasks can only be submitted
to those peers who were present in the group chat when the job was
created. The method waits until taskCount peers of the peers have
allowed to use their PC (the requests were sent out during the job
creation to all the peers who were in the group chat at that moment),
then new tasks are added to the job and executed in corresponding
peers. If not enough peers have allowed to use their PC in 1 minute, the
method throws an exception.

• void submitTasks(Collection<Task> tasks,
Collection<F2FPeer> peers)
This method is similar to the previous one. The difference is that this
method allows to submit already initialized tasks. This approach allows
the master task to prepare the new tasks with the initial data before
they are sent to the peers for execution. The parameter tasks defines
the collection of prepared tasks.

4.1.4 Roundup for F2F application developer

The key points a developer who wants to create new F2F applications should
remember from the previous sections are the following:

29

• an F2F application consists of tasks;

• each task has to extend the Task class and implement the runTask()
method, which is called when the task is started;

• one of these tasks is the master task, it is the task that is started if the
application is executed;

• the master task can submit slave tasks by invoking the
getJob().submitTasks() method;

• a task can exchange messages with other tasks with the help of proxies
that it can get using the getTaskProxy() method.

4.2 API for the F2F Computing framework de-
veloper

As mentioned in section 3.2.6 the computation layer of the F2F Computing
framework is designed to be easily extendable. Any module, that may be de-
veloped and added later, can easily send and receive custom messages between
peers. A module can register itself with the framework to listen for the spe-
cific type of messages, and if such a message is received it is forwarded to the
module. Additionally, a module can listen to the events when a Peer becomes
online or goes offline, and when a task starts or stops running. Also, as men-
tioned in section 3.1, it is quite easy to interface a new connection provider
module to the framework.

The following paragraphs describe the classes and interfaces of the F2F
Computing API that provide these features, and explain how a developer can
use them to extend the framework.

4.2.1 F2FComputing

The F2FComputing (the exact class name is ee.ut.f2f.core.F2FComputing)
class is the very center of the computation layer. Because of that the methods
of this class comprise all the features described in section 4.2 and use lots of
different classes and interfaces. It is more readable and understandable if I
will not describe the methods here as one list, but start to describe the classes
and interfaces and include the descriptions of the related F2FComputing class
methods in there.

4.2.2 F2FPeer

The F2FPeer (the exact class name is ee.ut.f2f.core.F2FPeer) class repre-
sents the Peer concept described in section 3.1. The purpose of this class is to
provide a logical link to the corresponding friend’s PC. This link can be used
to send custom data to the peer. The user of this class does not have to worry
about the real connection that is used for the data transfer. The framework

30

takes care of this and ensures that the best possible way of communication is
used. The most important methods of the F2FPeer class are the following:

• String getDisplayName()
This method returns the display name of the peer. This is the same
name that a contact has in the SIP Communicator contact list.

• UUID getID()
Each peer has an unique ID in the framework. This method returns the
ID of the peer.

• void sendMessage(Object message)
This method tries to send the message object to the peer. The message
object has to be serializable. The method just sends the message out
and returns. It does not guarantee that the message has reached the
destination peer. The TaskProxy.sendMessage() method described in
section 4.1.2 uses this method.

• void sendMessageBlocking(Object message, long timeout)
Like previous method this method tries to sends the message to the
corresponding peer. But this method is blocking, it returns only
when the message has reached the destination (or throws an excep-
tion in case of a failure or timeout). If the timeout is reached the
MessageNotDeliveredException is thrown. This exception does not
mean that the message was definitely not received by the peer, but means
that the acknowledgment from the peer was not received (so the message
may have been reached the destination or not). The timeout parame-
ter defines the maximum amount of time to wait (in milliseconds) be-
fore throwing the exception. If the timeout <= 0, the timeout is never
reached.

• void sendMessageBlocking(Object message)
This method is equivalent to the invocation
of sendMessageBlocking(message, 0). The
TaskProxy.sendMessageBlocking() method uses this method.

The methods of the F2FComputing class related to the F2FPeer class are the
following:

• F2FPeer getLocalPeer()
This method returns the F2FPeer object that represents the local ma-
chine.

• Collection<F2FPeer> getPeers()
This method returns the collection of peers that are known to the local
machine. These peers can be used to do F2F computing together.

31

4.2.3 F2FMessageListener

If a module of the F2F Computing framework wants to exchange some mes-
sages between the peers it can use the F2FPeer class for sending the mes-
sages out. Somehow the messages have to reach the desired module in
the receiver peer. The F2FMessageListener interface enables this. The
F2FMessageListener interface declares the following method:

• void messageReceived(Object message, F2FPeer sender)

The module has to define a message class that it uses as the data carrier,
realize a class implementing the F2FMessageListener interface, and register
this class to be the listener for the messages of the defined type. The following
methods of the F2FComputing class deal with the registration:

• void addMessageListener(Class messageType,
F2FMessageListener listener)
This method registers the listener object to be interested in
messages of the type messageType. If now a message of the type
messageType is received it is forwarded to the listener by invoking
the listener.messageReceived() method. Many listeners may listen
for the same type of messages. An incoming message is forwarded to all
of them.

• void removeMessageListener(Class messageType,
F2FMessageListener listener)
This method unregisters the listener object to be interested in
messages of the type messageType.

For instance, the module that checks if the TCP connection is possible be-
tween the peers uses this approach to exchange the information about the IP
addresses of the peers.

4.2.4 PeerPresenceListener

A module may be interested in knowing if a peer comes online or goes offline. If
a peer comes online the messages can be sent to the peer. If a peer goes offline
the messages sending is not possible any more. For instance, the module that
checks if the TCP connection is possible between the peers is such a module.
If a peer becomes online the module starts the process that checks if the
TCP connection can be made to the peer. To allow all interested modules
to be notified about the events concerning the presence of peers I created
the PeerPresenceListener interface. This interface declares the following
methods:

• void peerContacted(F2FPeer peer)

• void peerUnContacted(F2FPeer peer)

32

A module that wants to be notified about these events has to realize a class
implementing the PeerPresenceListener interface, and register this class to
be the listener for the events. The following methods of the F2FComputing
class deal with the registration:

• void addPeerPresenceListener(PeerPresenceListener listener)
This method registers the listener object to be interested in events
concerning the presence of peers. If a peer comes online all the listen-
ers get notified as the listener.peerContacted() method is called for
all of them. If a peer goes offline all the listeners get notified as the
listener.peerUnContacted() method is called for all of them.

• void removePeerPresenceListener(PeerPresenceListener
listener)
This method unregisters the listener object to be interested in events
concerning the presence of peers.

4.2.5 CommunicationProvider

As described in section 3.1 the architecture of the F2F Computing framework
contains the communication layer (see Figure 3.1) which provides the connec-
tion that is used to exchange messages between the peers. The communication
layer may contain several communication providers. The framework uses the
best available communication provider that is available between two peers for
the data exchange. To ease the development of new communication providers
and make them to easily interface with the computation layer I created the
CommunicationProvider interface. This interface declares the following meth-
ods:

• int getWeight()
This method returns the priority of the communication provider. The
framework uses this value to detect the best available communication
provider. The higher this value is, the better connection should be. The
TCP communication provider has implemented this method to return
1000, the UDP communication provider has implemented this method
to return 500, and the IM communication provider has implemented this
method to return 10.

• void sendMessage(UUID destinationPeer, Object message)
This method should try to send the message object to the peer
with the ID destinationPeer. This method is used by the
F2FPeer.sendMessage() method, described in section 4.2.2.

• void sendMessageBlocking(UUID destinationPeer, Object
message, long timeout)
This method is similar to the previous one, the difference is that
it should block until the message object has definitely reached the
peer with the ID destinationPeer. If the timeout is reached the

33

MessageNotDeliveredException should be thrown. The timeout
parameter defines the maximum amount of time to wait (in mil-
liseconds) before throwing the exception. If the timeout <= 0,
the timeout should never be reached.. This method is used by the
F2FPeer.sendMessage()method, described in section 4.2.2.

A new communication provider has to implement the CommunicationProvider
interface, and to notify the computation layer which peers are available via this
communication provider. For this it should use the following methods of the
F2FComputing class:

• void peerContacted(UUID peerID, String displayName,
CommunicationProvider comm)
This method tells to the computation layer that the peer with the
ID peerID (and with the display name displayName) is reachable via
the comm communication provider. If now according F2FPeer object’s
sendMessage() or sendMessageBlocking() is used the comm communi-
cation provider might be used (if it is the best one available) for the data
transfer. If the peer was not reachable before via any communication
provider the PeerPresenceListener objects are notified about a new
peer (the PeerPresenceListener.peerContacted() method is called,
like described in section 4.2.4).

• void peerUnContacted(UUID peerID, CommunicationProvider
comm)
This method tells to the computation layer that the peer with
the ID peerID is not any more reachable via the comm commu-
nication provider. After this the comm communication provider
is not used to send messages to the according peer. If the peer
is not reachable any more via any communication provider the
PeerPresenceListener objects are notified that the peer went offline
(the PeerPresenceListener.peerUnContacted() method is called, like
described in section 4.2.4).

If a communication provider receives a message from a peer (for instance the
TCP communication provider receives it from a TCP socket and the IM com-
munication provider receives a specially tagged chat message) it must use the
following method of the F2FComputing class to forward the message to the
computation layer:

• void messageReceived(Object message, UUID senderID)
This method forwards the message object to the computation layer,
and says that the peer with the ID senderID has sent it. Then the
computation layer forwards it to the proper F2FMessageListener ob-
jects (the F2FMessageListener.messageReceived() method is called,
like described in section 4.2.3).

Additionally, if the received message was being sent with the
sendMessageBlocking() method, the communication provider must send
back the acknowledgment that it has received the message.

34

Figure 4.1: Screen-shot, dialog box for the start of an F2F application

4.2.6 TaskListener

A module may be interested in knowing if a task starts to run (the runTask()
method of the task is called), stops (the runTask() method of the task ex-
its) or progresses (the task changes its progress via calling the setProgress()
method). For instance, the Tasks tab in the F2F Computing GUI (see Fig-
ure 3.3) is such a module. To allow all interested modules to be notified about
the events concerning the state of tasks I created the TaskListener interface.
This interface declares the following methods:

• void taskStarted(Task task)

• void taskStopped(Task task)

• void taskProgressed(Task task)

A module that wants to be notified about these events has to realize a class
implementing the TaskListener interface, and register this class to be the
listener for the events. The following methods of the F2FComputing class deal
with the registration:

• void addTaskListener(TaskListener listener)
This method registers the listener object to be interested in events con-
cerning the status of tasks. If a task starts to run all the listeners get noti-
fied as the listener.taskStarted() method is called for all of them. If
a task stops all the listeners get notified as the listener.taskStopped()
method is called for all of them. If a task updates its progress all the lis-
teners get notified as the listener.taskProgressed() method is called
for all of them.

• void removeTaskListener(TaskListener listener)
This method unregisters the listener object to be interested in events
concerning the status of tasks.

4.2.7 JobCreator

For the following description please refer to Figure 4.1. The figure shows the
dialog box that is an instance of the JobCreator class. The dialog provides

35

the only way for starting an F2F application. In the dialog, the application
specific jar-file/files has/have to be named (separated by semicolon), and the
name of the master task (this is usually specified in the manifest file and read
from there automatically) has to be given. If the Compute button is clicked
the application is started, which means the master task is initiated in the
local machine and its runTask() method is called. If the Participate as
a Slave check-box is marked the master task may submit slave tasks to the
local machine, otherwise not. The JobCreator class is a private member of
the F2FComputing class, thus to open the dialog the following method of the
F2FComputing class should be invoked:

• void startJob(Collection<F2FPeer> peers)
This method opens a new job creation dialog. The peers parameter spec-
ifies the peers to where slave tasks may be submitted. If the Participate
as a Slave check-box is marked, the local peer is added to the collection
(if it is not present already). If it is not marked and the peers collection
contains the local peer, it is removed.

4.3 MPI support
The Message Passing Interface (MPI) [17] has become the de facto standard
for programming distributed computationally and communicationally intensive
applications. If the API of the F2F Computing framework would support this
standard it would be a great virtue. This would enable the developers who are
MPI specialists easily to create new F2F applications. Also, it would support
the porting of existing MPI applications to the F2F Computing framework.
Andres Luuk has designed and implemented the MPI module for the F2F
Computing framework. His work is described in detail in [23].

36

Chapter 5

F2F Computing framework in
practice

This section describes how to use F2F Computing in practice and my current
experience with it. Section 5.1 will describe an example F2F application and
section 5.3 will present some results that I got while running the application on
different computers. Section 5.2 will describe how to start an F2F application.

5.1 Example F2F application: Distributed
Blender

The example program this paragraph describes was already introduced in sec-
tion 4.1. This application is called the Distributed Blender. It is based on
a free open source 3D content creation suite called the Blender [3]. One of
the features the Blender provides is movie rendering: one can render a movie
which is described in a blend-file (the file extension is .blend, this thesis does
not cover how to create these files). The rendering of a movie might take lots
of hours in one computer. The purpose of the Distributed Blender is to allow
to render a movie using the power of all the computers in a frid. The idea is
that each computer renders a different part of the movie. The prerequisites for
the Distributed Blender are that the Blender must be installed and the instal-
lation directory must be in the PATH environment variable of the operating
system.

If the application is started, the master task (see Listing 5.1) asks initial
data from the user (line 10). The user has to specify the input blend-file,
select the output location and the format of the resulting movie, and change
the number of the start and/or end frames if the rendering of all frames is not
desired (see Figure 5.1). This data is stored in the RenderJob object. Based
on the data given by the user, the master prepares the slave tasks (lines 13-29).
Each one is assigned to render a different part of the movie. If the preparation
is done, the slave tasks are submitted (line 32). Then the master task waits
until the slave tasks have returned the rendered movie clips to it (lines 36-39
and 51-61), and joins the clips into the desired movie (lines 42-46).

37

1 public class BlenderMasterTask extends Task
2 {
3 // here the master task collects the results the slave tasks have rendered
4 private List<RenderResult> renderedResu l t s =
5 new ArrayList<RenderResult >() ;
6

7 public void runTask ()
8 {
9 // get the initial data from the user

10 RenderJob renderJob = getRenderJobFromUser () ;
11

12 // prepare the slave tasks
13 Co l l e c t i on <Task> tasks = new ArrayList<Task >() ;
14 long [] partLengths = sp l i tTask (
15 renderJob . getEndFrame () − renderJob . getStartFrame () + 1 ,
16 this . getJob () . getPeer s () . s i z e ()) ;
17 long startFrame = renderJob . getStartFrame () ;
18 for (int i = 0 ; i < this . getJob () . getPeer s () . s i z e () ; i++)
19 {
20 BlenderSlaveTask s laveTask =
21 new BlenderSlaveTask (
22 renderJob . getInputFileName () ,
23 renderJob . g e t InputF i l e () ,
24 renderJob . getOutputFormat () ,
25 startFrame ,
26 startFrame + partLengths [i] − 1) ;
27 ta sk s . add (s laveTask) ;
28 startFrame += partLengths [i] ;
29 }
30

31 // submit the slave tasks
32 this . getJob () . submitTasks (tasks , this . getJob () . getPeer s ()) ;
33

34 // wait until the slaves have rendered and returned the movie clips
35 // the messageReceivedEvent() method collects the results
36 synchronized (r enderedResu l t s)
37 {
38 r enderedResu l t s . wait () ;
39 }
40

41 // compose the resulting movie
42 composeResult (
43 renderedResu l t s ,
44 renderJob . getOutputLocation () ,
45 renderJob . getInputFileName () ,
46 renderJob . getExtens ion ()) ;
47 }
48

49 // handle messages from the slave tasks
50 // this means collecting the rendered parts
51 public void messageReceivedEvent (S t r ing remoteTaskID)
52 {
53 TaskProxy proxy = this . getTaskProxy (remoteTaskID) ;
54 RenderResult r enderResu l t = (RenderResult) proxy . rece iveMessage () ;
55 synchronized (r enderedResu l t s)
56 {
57 r enderedResu l t s . add (renderResu l t) ;
58 i f (r enderedResu l t s . s i z e () == this . getJob () . getPeer s () . s i z e ())
59 r enderedResu l t s . n o t i f yA l l () ;
60 }
61 }
62 }

Listing 5.1: The Distributed Blender Master Task

38

Figure 5.1: Screen-shot, the GUI of Distributed Blender

The slave task (see Listing 5.2) renders the part of the movie the master task
assigned to it (lines 10-18). This is done by starting the Blender executable
with the appropriate arguments (lines 23-28; such approach is an security
issue of the F2F Computing framework, as at the moment tasks can start
any external application). After the Blender has finished the rendering (lines
31-50), the slave task sends the resulting movie clip to the master task (lines
53-64).

The compiled application should be packaged in a jar-file. In the
manifest file the name of the master task class should be specified with
the F2F-MasterTask attribute. In our case this would be the following:
F2F-MasterTask: BlenderMasterTask.

5.2 Starting an F2F application

This paragraph describes how the process of starting an F2F application should
look like.

A user of the SIP Communicator, Keio, wants to run the Distributed
Blender application, which he just has developed. He sees that some of his
friends are online (see Figure 5.2) and decides to use the power of their PCs
to complete the rendering quicker. An F2F application can be started from
an F2F chat room. Keio creates a chat room and calls it “Keio’s rendering
group” (see Figure 5.3). Then, he opens the chat room and drags and drops
the friends he wants to join from the contact list into the group chat window
(see Figure 5.4). Keio can chat with them and explain the application he wants

39

1 public class BlenderSlaveTask extends Task implements S e r i a l i z a b l e
2 {
3 // the data for rendering
4 private St r ing inputFileName ;
5 private byte [] i npu tF i l e ;
6 private St r ing outputFormat ;
7 private long startFrame ;
8 private long endFrame ;
9

10 public BlenderSlaveTask (S t r ing inputFileName , byte [] i nputF i l e ,
11 St r ing outputFormat , long startFrame , long endFrame)
12 {
13 this . inputFileName = inputFileName ;
14 this . i npu tF i l e = inpu tF i l e ;
15 this . outputFormat = outputFormat ;
16 this . startFrame = startFrame ;
17 this . endFrame = endFrame ;
18 }
19

20 public void runTask ()
21 {
22 // start to render the movie clip
23 St r ing tempDir = System . g e tP rope r t i e s () . getProperty (" java . i o . tmpdir") ;
24 F i l e f i l e = saveF i l e (this . i nputF i l e , tempDir + this . inputFileName) ;
25 St r ing [] cmdarr = { " blender " , "−b" , f i l e . getName () , "−o" , tempDir ,
26 "−F" , this . outputFormat , "−s " , S t r ing . valueOf (this . startFrame) ,
27 "−e" , S t r ing . valueOf (this . endFrame) , "−a" , "−x" , "1" } ;
28 Process proc = Runtime . getRuntime () . exec (cmdarr) ;
29

30 // wait until the frames get rendered
31 BufferedReader br = new BufferedReader (
32 new InputStreamReader (proc . getInputStream ())) ;
33 St r ing l i n e ;
34 while ((l i n e = br . readLine ()) != null && ! isStopped ())
35 {
36 i f (l i n e . s tartsWith (" ’ b lender ’ i s not r ecogn i z ed ")
37 | | l i n e . indexOf (" b lender ") != −1
38 && l i n e . indexOf ("not found") != −1)
39 {
40 System . out . p r i n t l n ("Blender not found ! ") ;
41 break ;
42 }
43 else i f (l i n e . s tartsWith ("Append frame")
44 | | l i n e . s tartsWith ("added frame")
45 | | l i n e . s tartsWith ("Writing frame"))
46 {
47 System . out . p r i n t l n ("Rendered frame " + l i n e . s p l i t (" +") [2]) ;
48 }
49 }
50 proc . des t roy () ;
51

52 // send the rendered movie clip to the master task
53 byte [] r ende r edF i l e = l o adF i l e (tempDir +
54 generateOutputFileName (
55 renderTask . getStartFrame () ,
56 renderTask . getEndFrame () ,
57 renderTask . getExtens ion ())) ;
58 RenderResult r e s u l t =
59 new RenderResult (
60 this . startFrame ,
61 this . endFrame ,
62 r ende r edF i l e) ;
63 TaskProxy masterProxy = this . getTaskProxy (this . getJob () . getMasterTaskID ()) ;
64 masterProxy . sendMessage (r e s u l t) ;
65 }
66 }

Listing 5.2: The Distributed Blender Slave Task

40

Figure 5.2: Screen-shot, SIP Communicator contact list (also used as a source
from where to drag contacts and drop to a chat group)

Figure 5.3: Screen-shot, create an F2F chat room

41

Figure 5.4: Screen-shot, Keio drags Evelin to the group chat

42

Figure 5.5: Screen-shot, two participants in Keio’s rendering chat room

to run (see Figure 5.5). The next step for Keio is to click on the F2F button in
the chat room toolbar. This opens a dialog via which F2F applications can be
started. This dialog is described in section 4.2.7. In the dialog, Keio browses
for the jar-file(s) that are needed for the Distributed Blender program, speci-
fies the name of the master task (this is usually specified in the manifest file
and read from there automatically) and whether he wants a slave task to be
run on his PC or not. When Keio has filled the dialog with appropriate values,
he clicks the Compute button and the application is started. As an initial level
of security, the framework asks each chat room participant if he/she allows
Keio to run the application (see Figure 5.6). If someone does not allow it,
the framework does not allow any tasks of the application to be sent to the
corresponding PC.

5.3 Rendering movie results
This paragraph compares how much time it takes to render the same
movie with 1 or 3 PCs using the Distributed Blender program described
in section 5.1. Lets name the computers M1, M2 and M3. The blend-
file I used (taken from http://wiki.blender.org/index.php/Image:BSoD-ItCA-
final.blend) describes an animation which contains 120 frames and all the

43

Figure 5.6: Authorization to run a job.

frames are equally difficult to render (frame rendering time should be the
same for all frames).

At first I rendered the movie separately on each machine. M1 finished the
rendering in 310 seconds, M2 in 321 seconds and M3 in 309.

Then I rendered the movie using all three machines. M1 and M2 were
located in the network of University of Tartu. M3 was in my home (good
Internet connection). When I formed a frid with the computers (using three
MSN accounts) the creation of TCP connection between them succeeded. This
meant that the master task could distribute the slave tasks quickly and the
slave tasks could send the rendered results to the master task fast. The network
overhead was not significant. The rendering was finished in 112 seconds. As
expected, the rendering on three computers took almost three times less time
than it took on the slowest machine.

44

Chapter 6

Summary and outlook

This thesis presented a lightweight desktop Grid framework which enables to
set up a computational friend-to-friend Grid environment with the help of
using instant messaging systems. We call it the F2F Computing framework.

I created the first version of the framework, which is realized as a plug-in
to the multi-protocol instant messenger SIP Communicator. The framework
enables the creation of small desktop Grids with no administrative overhead.
If you want to use the framework, you just have to install the version of SIP
Communicator which includes the F2F Computing plug-in; no additional ad-
ministrative effort is needed. The framework shows the potential of combining
instant messaging with Grid techniques. Setting up Grids spontaneously in
small social communities will also accelerate the turnaround for testing and
migrating Grid applications on this platform and so enable improvement in
the development of Grid applications. Furthermore, opening the Grids to the
public will lead to Grid applications contributed by public communities and
increase the possibility to re-use components of existing Grid applications to
re-combine them into new applications.

The described framework has its strength in the simplicity for set-up and
use in small communities consisting of close friends who know each other in
person. The framework allows you to use the power of your friends’ PCs. To
do this, you just have to create a group chat, invite your friends to the chat
(your and their PCs will form an F2F Grid (frid)), and start the desired F2F
application which will run on the formed frid. However, it is possible that your
closest friends have in turn their friends on their list whom you do not need to
know but who would be willing to run an application of a friend of their friend.
Enabling such socially more loose but bigger communities to be combined into
next generation frids is one feature that should be considered when developing
the next version of the F2F Computing framework. To widen the range of the
F2F Computing even more, it would be useful to supply adapters to different
other Grid middlewares to be able to participate in F2F computations through
some real user having credentials to do so. For example, your friend who has
access to a Globus Toolkit based Grid system might be able to use his right to
submit there an F2F computational task. However, this may be also a local
computer cluster, to which one could easily add the F2F pool in such way.

45

The framework provides a simple but still powerful API to support the
development of distributed applications that can be run on frids. The API en-
ables computing nodes to interact via sending and receiving messages, opening
a door for creation of not only embarrassingly parallel distributed applications.
Additionally, the API supports the MPI standard, which has become the de
facto standard for programming distributed computationally and communi-
cationally intensive applications. This enables the developers who are MPI
specialists to easily create new F2F applications. Also, it supports the porting
of existing MPI applications to the F2F Computing framework. An instant
messaging protocol is used for starting up the connection between Grid nodes,
but the communication channels are built up thereafter independently using
the fastest available protocol, with the option to use even NAT traversal meth-
ods.

The security and configuration issues have not been covered in my work,
therefore next version(s) of F2F Computing framework should handle them,
otherwise the F2F Computing will not be accepted by the wider public (see
section 2.3). The owners of PCs should have precise control over their resources
at any moment. Java may be helpful in providing sandbox environment by
limiting access to certain resources, or even our own virtual machine might be
developed. The trust between friends may be something that can be used while
dealing with the security issues. Also, in the future the framework might deal
with the dynamic and heterogeneous nature of Grids. For instance, it would be
nice to be able to submit an F2F application and order the framework to use
the power of your friends’ computers, and the framework dynamically assigns
each task to the most suitable computer, automatically reassigns tasks which
were running on PCs that have left the Grid, and even uses the power of these
friends’ PCs who come online later.

To prove that the framework can actually be used and to ease the first steps
in doing it, I described how to start F2F applications, presented an example
F2F application for movie rendering, and showed that a movie can be rendered
with a significant speedup.

This thesis shows the potential of combining instant messaging, Grid, and
P2P techniques. I believe that the introduced approach of uniting the com-
putational power of social communities has a great future. Improving the
framework with the primary focus on security and configurability and creating
some popular F2F applications will widen the circle of Grid users by ordinary
people without any IT background. Thus making Grid computing popular for
the public.

The F2F Computing framework is open-source and available under an
LGPL license [8]. You can monitor it and contribute to it at the Friend-
to-Friend Computing homepage [7].

46

Sõprusraalimine
Magistritöö (20 AP)
Keio Kraaner
Resümee

Hetkel on võrkraalimiseks (Grid computing) kasutatavad süsteemid väga
keerulised ja raskekaalulised. Ainuüksi nende töökorras hoidmine nõuab suurt
administratiivset tööd, rääkimata installeerimisest. Seetõttu ei ole võrkraali-
missüsteemid laiemalt levinud. Samas on väga populaarsed ja laialdaselt ka-
sutatavad kiirsuhtlust (instant messaging) võimaldavad süsteemid nagu MSN
Messenger ja Skype.

Minu magistritöö eesmärgiks oli ühendada võrkraalimiseks ja kiirsuhtuseks
kasutatavaid tehnikaid ning luua nende baasil uus võrkraalimise raamistik,
mida oleks kerge hallata ja mis võimaldaks kiirsuhtluse kasutajatel hõlpsalt
oma arvutite võimsust ühendada ja mingit arvutuslikku probleemi kiiremi-
ni lahendada. See lähenemine sai nimetatud sõprusraalimiseks ja loodava
raamistiku nimeks sai F2F Computing.

Koostöös Ulrich Norbisrathi, Eero Vainikko ja Oleg Batraševiga kirjutasin
sõprusraalimise ja F2F Computing raamistiku peamisi põhimõtteid kajastava
artikli [24], mis võeti selle aasta juunis Ateenas toimuva konverentsi The
Third International Conference on Internet and Web Applications and Ser-
vices (ICIW 2008) kavasse.

F2F Computing raamistiku arendamise baasiks sai valitud SIP Commu-
nicator, mis on Java programmeerimiskeeles arendatav avatud lähtekoodiga
modulaarse arhitektuuriga kiirsuhtlusprogramm. Realiseerisin raamistiku selle
suhtlusprogrammi pistikprogrammina. Seetõttu on raamistiku installeerimine
sama lihtne kui SIP Communicator’i installeerimine.

Tegin F2F Computing raamistiku selliselt, et see lisab SIP Communicator’i
kasutajatele võimaluse luua erilisi jututubasid, kuhu saab kutsuda sõpru kasu-
tatavast suhtlusprotokollist (MSN, ICQ jne) sõltumata, nendega seal suhelda
ja käivitada raamistikuga ühilduvaid rakendusprogramme, mis siis püüavad ju-
tutoaga seotud inimeste arvutite võimsust ära kasutada. Loomulikult peavad
tuttavad oma arvuti kasutamist lubama.

Selleks, et F2F Computing raamistikuga ühilduvate rakenduste aren-
damine oleks võimalikult lihtne, sisaldab raamistik rakendusliidest (Applica-
tion Programming Interface). Selle abil saab ka olemasolevaid programme
raamistikuga ühilduvaks kohaldada. Tähelepanuväärne on see, et rakenduslii-
des võimaldab hajusprogrammi osadel omavahel sõnumeid vahetades suhelda
(enamus võrkraalimissüsteeme seda ei võimalda). Rakendusliides toetab ka
MPI (Message Passing Interface) standardit, mis on laialdaselt kasutatav
arvutuslikult ja infovahetuslikult intensiivsete hajusrakenduste programmeeri-
miseks.

47

Tutvustasin oma töös F2F Computing raamistikku. Kirjeldasin selle
tähtsamaid osi, töö- ja kasutuspõhimõtteid ning -võimalusi. Näitasin kiir-
suhtluseks ja võrkraalimiseks kasutatavate tehnikate ühendamise potentsiaal-
sust. Ma usun, et see lähenemine omab suurt tulevikku. Kui F2F Com-
puting raamistikku parendatakse (eeskätt turvalisust ja konfigureeritavust sil-
mas pidades) ning tehakse mõned populaarsed raamistikuga ühilduvad raken-
dusprogrammid, on vägagi tõenäoline, et võrkraalimist kasutavate inimeste
hulk laieneb ja jõuab sõprusraalimise kaudu ka nendeni, kellel puudub in-
fotehnoloogiaga lähem side.

48

Appendix A

Source code

The source code related to the F2F Computing framework is being held in an
SVN repository that is maintained by Google. The home page address of the
F2F repository is http://spontaneous-desktop-grid.googlecode.com/. There
you will find up to date information about the framework, the source code,
and how to start using it. Also, the latest release should be available.

49

50

Bibliography

[1] Alchemi. http://www.alchemi.net/.
[2] Apache Felix. http://felix.apache.org/.
[3] Blender. http://www.blender.org/.
[4] Comparison of instant messaging clients on wikipedia. http://en.wikipedia.

org/wiki/Comparison_of_instant_messaging_clients.
[5] Einstein@home. http://einstein.phys.uwm.edu/.
[6] Elephant’s dream. http://www.elephantsdream.org/.
[7] Friend-to-friend (F2F) computing. http://f2f.ulno.net/.
[8] GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.

html.
[9] JNGI. https://jxta-jngi.dev.java.net/.

[10] xeerkat - google code. http://code.google.com/p/xeerkat/.
[11] D. P. Anderson. BOINC: A system for public-resource computing and storage.

In Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04),
pages 4–10, Nov. 2004.

[12] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
Seti@home: an experiment in public-resource computing. Commun. ACM,
45:56–61, 2002.

[13] F. Berman, G. Fox, and A. J. G. Hey. Grid Computing: Making the Global
Infrastructure a Reality. John Wiley and Sons, 2003.

[14] I. Foster. Globus: a metacomputing infrastructure toolkit. International Jour-
nal of High Performance Computing Applications, 11:115–128, June 1997.

[15] L. Gong. Jxta: a network programming environment. IEEE Internet Comput-
ing, 5:88–95, 2001.

[16] Grace, Coulson, Blair, and Porter. Deep middleware for the divergent grid,
2005. http://dx.doi.org/10.1007/11587552_17.

[17] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel programming
with the message-passing interface. MIT Press, 1994.

[18] V. Huber. Unicore: A grid computing environment for distributed and parallel
computing. pages 258–265. Springer-Verlag, 2001.

[19] E. Ivov and sip-communicator community. Sip communicator. http://www.
sip-communicator.org/.

[20] S. Kleiman, D. Shah, and B. Smaalders. Programming with threads, chapter 16.
SunSoft Press, Mountain View, CA, USA, 1996.

[21] A. Lind. NAT Traversal in P2P systems in Java, 2008, University of Tartu.
[22] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal. High Performance Comput-

ing: Paradigm and Infrastructure, chapter Peer-to-Peer Grid Computing and a
.NET-Based Alchemi Framework, pages 403–429. Wiley Press, 2005.

[23] A. Luuk. Porting MPI applications to the F2F Computing framework, 2008,
University of Tartu.

51

 http://www.alchemi.net/
 http://felix.apache.org/
 http://www.blender.org/
 http://en.wikipedia.org/wiki/Comparison_of_instant_messaging_clients
 http://en.wikipedia.org/wiki/Comparison_of_instant_messaging_clients
 http://einstein.phys.uwm.edu/
 http://www.elephantsdream.org/
 http://f2f.ulno.net/
 http://www.gnu.org/licenses/lgpl.html
 http://www.gnu.org/licenses/lgpl.html
 https://jxta-jngi.dev.java.net/
 http://code.google.com/p/xeerkat/
 http://dx.doi.org/10.1007/11587552_17
 http://www.sip-communicator.org/
 http://www.sip-communicator.org/

[24] U. Norbisrath, K. Kraaner, E. Vainikko, and O. Batrasev. Friend-to-Friend
Computing - Instant Messaging Based Spontaneous Desktop Grid. In The Third
International Conference on Internet and Web Applications and Services (ICIW
2008), 2008.

[25] Osgi-Alliance. Osgi Service Platform, Release 3. IOS Press, Inc, 2003.
[26] B. C. Popescu, B. Crispo, and A. S. Tanenbaum. Safe and private data sharing

with turtle: Friends team-up and beat the system. Proc. of the 12th Cambridge
Intl. Workshop on Security Protocols, 2004.

[27] J. Rosenberg. draft-ietf-mmusic-ice - interactive connectivity establishment
(ice): A protocol for network address translator (nat) traversal for offer/an-
swer protocols. http://tools.ietf.org/html/draft-ietf-mmusic-ice.

[28] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice:
the condor experience. Concurrency and Computation: Practice and Experi-
ence, 17:323–356, 2005.

[29] J. Verbeke, N. Nadgir, G. Ruetsch, and I. Sharapov. Framework for Peer-to-
Peer Distributed Computing in a Heterogeneous, Decentralized Environment.
In GRID ’02: Proceedings of the Third International Workshop on Grid Com-
puting, pages 1–12, London, UK, 2002. Springer-Verlag.

[30] B. Vinter. The grid taken literally. In The 8th Hellenic European Research on
Computer Mathematics & its Applications, Athens - Greece, Sept. 2007.

52

 http://tools.ietf.org/html/draft-ietf-mmusic-ice

