
University of Tartu
Faculty of Mathematics and Computer Science

Institute of Computer Science
Computer Science Specialty

Andres Luuk
Porting MPI applications to the

Friend-to-Friend computing framework
Master Thesis (20 CP)

Supervisors: Ulrich Norbisrath

Eero Vainikko

Author: …………………………………….. “……“ May 2008
Supervisors: Ulrich Norbisrath……………...“……“ May 2008

 /Eero Vainikko…………………“……“ May 2008

Professor: Eero Vainikko …………………... “……“ May 2008

TARTU 2008

2

Contents

1 Introduction 7

2 MPI 9

2.1 What is MPI? . 9

2.2 History of MPI . 10

2.3 Existing implementations . 11

2.4 Chapter Summary . 12

3 F2F Computing framework 13

3.1 What is the F2F Computing framework? 13

3.2 History of F2F Computing framework 14

3.3 Chapter Summary . 14

4 F2F-MPI 15

4.1 Why do we need MPI on F2F? 15

4.2 What is P2P-MPI . 15

4.3 Integrating P2P-MPI . 16

4.4 Legal issues . 18

4.5 Features . 19

4.6 Chapter Summary . 20

5 Implementation 23

5.1 Implemented commands . 23

5.2 Disadvantages of my Implementation 35

5.3 Problems in Implementation . 36

5.4 Conclusions . 36

5.5 Chapter Summary . 37

3

6 Examples 39
6.1 How to run F2F-MPI . 39
6.2 Example program . 39
6.3 More example program references 43
6.4 Chapter Summary . 44

7 Summary 45

Bibliography 49

A F2F framework 53

B MPI Example programs 55

C Timeline 57

4

Acknowledgements

There are some people I would like to thank for their help in making this thesis.
First I would like to thank my supervisor Ulrich Norbisrath. He gave many
suggestions about writing the work and helped me with the license conflict with
P2P-MPI. Then I would like to thank Stéphane Genaud from the P2P-MPI project
who gave us the license to modify P2P-MPI under LGPL license instead of GPL.
Last, but not least, I would like to thank Keio Kraaner helping me understand
and modify the F2F Computing framework.

5

6

Chapter 1

Introduction

This thesis is about using the Message Passing Interface (MPI) [45] in a P2P
computing framework called F2F Computing [43].

The F2F Computing framework is an easy to use desktop Grid framework
that supports distributed computing. The framework is written in Java and runs
as a SIP Communicator plug-in [36]. It sends your distributable Java program
to selected peers and executes it on them. Of course the framework supports
communication between the peers.

However there are some usability problems concerning the F2F Computing
framework. For example, we must write a lot of code to do some common oper-
ations that we need in different programs. At the beginning of the task we must
always find all other allowed peers and explicitly submit our task to them. In
the communication, when we need to send some messages to all connected peers,
we must iterate over all the peers and send each message separately. There is
no support for synchronization or checkpointing. It would be better if we could
write the programs so that we must not write the extra functionality every time
we make a new program.

One of the solutions is to use some standard of distributed computing in the
F2F Computing framework to make programs much shorter and simpler. Then
we will not have to submit tasks to all the peers explicitly ourselves and must not
spend time writing code for sending and collecting broadcast results from all the
peers one by one.

Message Passing Interface (MPI) has become the de facto standard in dis-
tributed and parallel software development. In this thesis I create an implemen-
tation of MPI for the F2F Computing framework so that we can write programs
much shorter and easier to understand. An other advantage of MPI is this, if F2F

7

supports MPI then we can port other already existing MPI programs to F2F with-
out having to rewrite the communication logic of the programs. The Distributed
Systems Group in the University of Tartu has some legacy MPI programs in its
DOUG (Domain Decomposition on Unstructured Grids) [42, 1] system. If we
have MPI capability in the F2F Computing framework then we can port the
legacy DOUG programs to the framework much easier.

If we can use MPI in F2F, the initialization of tasks will be easier with just one
line of code. MPI specifies also a lot of communication functions in its standard.
We can use them to reduce our 10-line broadcast functions to just one line of code
so that we can spend more time writing the actual program. As you can, imagine
there will be much less code for peer communication and much more code of the
programs will do some actual work.

To solve this problem one possibility is to write an entirely new MPI imple-
mentation for the F2F Computing framework, but another possibility is to take
an existing Java MPI implementation and integrate it in to the F2F Computing
framework. I chose the second possibility, and for getting MPI support to the F2F
Computing framework I take a pure Java MPI implementation P2P-MPI [32], and
integrat it into the framework.

In this thesis I will give an introduction to the MPI and the F2F Computing
framework, what they are and why they where created. After this I will give an in-
troduction to a pure Java MPI implementation – P2P-MPI and how do I integrate
it with the F2F Computing framework. An overview follows on implemented MPI
commands and what these commands do exactly. For most of the commands, I
am giving also an example. There will be a summary of the usability of the MPI
on the F2F Computing framework. I will also provide an example program with
detailed explanations and references to some more example programs on how to
use the ported MPI on the F2F Computing framework. A reference to the frame-
works home page [3] is given where cyou an download the newest version of F2F
which includes F2F-MPI.

8

Chapter 2

MPI

2.1 What is MPI?

The Message Passing Interface (MPI) is a standard for distributed and parallel
computing. The goal of MPI is to give a standard witch can be used in different
environments for distributed and parallel computing. Now MPI has become the
de facto standard for distributed and high performance computing.

MPI specifies a set of procedures to be used in message passing between dif-
ferent processes. For these procedures MPI specifies the logic behind them, which
is what the commands must do, not how the commands must be implemented.
This makes the standard more usable, as the way of sending information can be
implementation specific and a specific implementation may need different ways of
communication patterns for performance or there may be a need to cache mes-
sages.

The goals of MPI are performance, scalability, and portability. MPI is consid-
ered to have been successful in meeting these goals. There are a lot of platform
specific implementations of MPI out there (FORTRAN [6], C [6], C++ [29]), be-
cause the standard is easy to implement in different environments. This is also
the reason way the performance of MPI is good. From the many implementations
of MPI the people can use the best performing most commonly. Due to the fact
that there are a lot of compilers implemented, in different languages, in different
operating systems, the programs written in MPI are easily portable.

MPI is used by people who need to make large scale calculations. A lot of
supercomputers and Grid systems have platform specific MPI implementations.
They use it for communication between parallel processes and for making large
scale calculations. [7]

9

However, due to MPI being an old standard, it is defined for a procedure
oriented paradigm and not for the Object-Oriented paradigm.

2.2 History of MPI

In the beginning of the 90-s there were a lot of different programs for parallel
and distributed computing, but they were all chaotic and had no standard to
follow. There was a need for such a standard in this field. In 1992 80 people
from 40 organizations, representing vendors of parallel systems, industrial users,
industrial and national research laboratories and universities came together and
created the MPI Forum [8]. Its goal was to make a usable standard for distributed
and parallel system, getting ideas from existing systems, but not selecting one of
them for the standardization. [45]

The process of standardization began in a workshop in Williamsburg, Virginia
at the end of April in 1992. After just one year of work in 1993 the first draft of
MPI-1 was finished. It was meant to “get the ball rolling” and promote discussion.
This effort was successful, because the first draft had the main features and the
first official version of MPI-1 was already presented at June 1994. [45]

In 1995 an updated version of MPI was released - MPI-1.1. The changes from
Version 1.0 are minor. In Version 1.1 MPI Forum had corrected some errors and
made clarifications in the MPI documentation.

After MPI-1.1 was finished the MPI Forum started working on MPI-2. Their
goal was to make corrections and clarifications for the MPI-1.1 documentation
and future developing the standard with new functionality. 1996 the MPI-1.2 and
MPI-2 standards were released.

MPI-1.2 added some small functionality and clarification to MPI-1.1 and was
quickly taken to use and it is used even now, because there are a lot of legacy
programs. MPI-2 added a lot of new functionality to the MPI standard and it
is backwards compatible to MPI-1. However, at that time MPI-1 was already
out with a lot of stable implementations. Most people sicked to the version MPI-
1.2, instead of trying to use the new, jet unstable and half implemented MPI-2
implementations. Today of course MPI-2 is fully implemented and usable. [8, 7]

After that, the MPI Forum was dormant. The MPI Forum had its mailing list,
but was no work there done on the standard. In 2006 the MPI Forum became
active again for the purpose of clarifying MPI-2 issues and in the beginning of
2007 the MPI-2.1 was released. Currently the MPI Forum makes effort in making

10

the MPI-2.2 and MPI-3 standards. [8]

2.3 Existing implementations

There exist a lot of different MPI implementations. Most of them are written
in C, C++ and assembly language, and are meant for C, C++ and FORTRAN
programmers. [7]

The first implementation of MPI was MPICH [41, 29], from Argonne National
Laboratory and Mississippi State University. Argonne National Laboratory has
developed its MPICH even further, now there is a MPI-2.1 implementation called
MPICH 2. Most of the earlier supercomputer companies in 90-s used a commer-
cialized version of MPICH or made their own implementation of MPI-1. IBM was
also one of the first implementers of MPI for its supercomputers. [7]

Another early open implementation of MPI was LAM/MPI [47, 6] from Ohio
Supercomputing Center. Later LAM/MPI, FT-MPI from the University of Ten-
nessee and LA-MPI from Los Alamos National Laboratory merged and made a
new MPI project - Open MPI [40, 31]. Open MPI-s aims to build the best MPI
library available. It was created from these three implementations, as the devel-
opers of Open MPI thought that they excelled in some areas and would be a good
start for an open project. [7]

There are attempts to make an MPI implementation to other languages than
C, C++, or FORTRAN.

For example, at least five Python implementations exist: PyMPI [46],
mpi4py [28], PyPar [34], MYMPI [48] and the MPI module in Scien-
tificPython [35]. PyPar, MYMPI, and the MPI module in ScientificPython are
typical Python modules that can be imported into your program and then be
used like any other module. PyMPI is more interesting, as it is a variant Python
interpreter with integrated MPI capabilities. You do not use imported modules
with PyMPI for running MPI, but PyMPI Python interpreter implements the
MPI commands. You can just write the MPI commands inside your program, the
PyMPI makes the calls automatically for the compiled code. [7]

Microsoft has its own MPI implementation MS-MPI (Microsoft Messaging
Passing Interface) [9]. It is used to communicate between the processing nodes
on the cluster network in Windows Compute Cluster Server [37]. MS-MPI imple-
ments MPI-2 with over 160 functions, but has been slightly modified, due to the
security reasons.

There is even a .NET implementation of MPI: Pure Mpi.NET [33]. It is an

11

Object-Oriented API for MPI implemented in .NET that takes full advantage of
.NET features.

There have been some attempts to make MPI implementations for Java. One of
the first was Bryan Carpenter’s with mpiJava [39, 30]. It uses local C MPI libraries
(through JNI wrappers) to make the MPI calls. It is a hybrid implementation
and not very portable unlike most of the Java programs, as this approach uses
platform specific C MPI libraries. Another approach is to implement the MPI
API fully in Java. This is much more portable and easier to use. One full Java
approach to MPI is P2P-MPI [32]. It has implemented a subset of MPI commands
and uses the MPJ [38] API. The MPJ API is an MPI API defined for Java, it trys
to follow Sun Microsystems coding conventions and be more object-oriented. [7]

2.4 Chapter Summary

Message Passing Interface or short MPI is the de facto standard for distributed
and high performance computing. The first version of MPI was made in the
beginning of to 90-s and now MPI is in version MPI-2.1. The implementations of
MPI are mostly for FORTRAN, C, or C++ programming languages. There are
a lot of MPI programs out there and it is the de facto standard for distributed
computing, so we will implement it in the F2F Computing framework for allowing
better usability.

12

Chapter 3

F2F Computing framework

3.1 What is the F2F Computing framework?

The Friend-to-Friend (F2F) Computing framework [43] is a lightweight desktop
Grid framework. It utilizes instant messaging for easier Grid management and
Peer-to-Peer techniques for faster communication between peers. The framework
is based on an instant messenger, this allows easily setting up your own Grids and
then distributing your application on it. One of the concepts behind making the
Grid in instant messenger is that you know all the people in the Grid, as they are
your friends and they can trust you to use their computer.

The framework is developed by the Distributed Systems Group in Tartu Uni-
versity [2]. It is written in Java and is a SIP Communicator [36] plug-in. Like
the framework itself, the programs for F2F must be written in Java. The main
reason why the language Java is chosen is because Java is multiplatform and eas-
ily portable and one of the goals of the F2F Computing framework is to make
a gird system that can be run anywhere. SIP Communicator is chosen for the
Grid composition, because it is an instant messenger written in Java and it has a
plug-in based architecture.

If a Grid is composed then F2F always supports connection between peers.
The first possibility of communication comes from the fact that the framework is
an instant messenger client plug-in, it can always send messages between peers by
instant messages. As these connections are usually slow the framework supports
better and faster types of communication between peers. The speed of commu-
nication is important in distributed computing. The framework will choose the
fastest way of communication possible. If direct TCP between peers is possible
then it is used. If it is not possible, then the framework will try to do NAT

13

traversal hole punching for getting a direct and fast link between peers. [44]

3.2 History of F2F Computing framework

The concept’s idea behind F2F computing is Ulrich Norbisrath’s. He thought
it would be nice to have an easy to use desktop Grid system where you would not
have to spend a lot of time managing it. You would just collect some friends in
your instant messenger client and then you could run your job on their computers
and get the result much faster than making it only yourself.

The development of the F2F Computing framework began in spring 2007.
The lead programmer behind the project is Keio Kraaner whose main focus is to
see that the development will be on track and that the framework will become
usable. In the development of F2F the chosen language is Java, because it is
multiplatform. The instant message client behind the framework is chosen to be
SIP Communicator, as it is written in java and supports plug-ins.

Now a first version F2F is almost ready. And the collecting of ideas for next
version has already begun. Of course there will be some more new features.
Security will be paid more attention in the next version due to lower priority in
the very beginningy. There will be more configuration possibilities like saying how
much of your processor time you can give to a process.

3.3 Chapter Summary

The F2F Computing framework is an easy to use Grid framework that utilizes
instant messenging for easier Grid management and Peer-to-Peer techniques for
communication. F2F is written in Java and it is a SIP Communicator plug-in.
The F2F Computing framework is a new framework as its development began
only about a year ago. The main part of my work is for further advancing this
framework by giving the MPI capability to this framework.

14

Chapter 4

F2F-MPI

4.1 Why do we need MPI on F2F?

F2F Computing framework is written as an enviroment for writing distributable
programs, it supports distributing the program and then allowing simple message
sending between peers. Initially the development of F2F Computing framework
had the focus was on making a stable and usable framework, and not on making a
lot of usability functionality, for making the programming of your programs easier.
This is the reason I make this work. To make the programming easier I will extend
the F2F Computing framework with MPI functionality, because MPI has become
the de facto standard in distributed and parallel software development.

To achieve this I have two possibilities:

• Write an MPI implementation from scratch

• Try to adopt an existing implementation to our framework.

I chose the integration of an existing pure Java MPI framework called P2P-MPI.
The advantages of it is, that I will have to rewrite the basic communication logic
and will get more advanced functions from an already existing system. Another
benefit is that there will be test programs for the old MPI system, and it will
be easy to import them to our new MPI implementation and see if the system is
working properly.

4.2 What is P2P-MPI

P2P-MPI (Peer-to-Peer MPI) [32] is a pure Java MPI implementation written in
Java for Java programs in the University of Louis Pasteur.

15

The main features of P2P-MPI are:

1. No need for platform specific OS binaries - it is a pure Java program.

2. Management of peers is easy – uses super node to locate, add or remove
them.

3. Application can have fault-tolerance – system holds track of replicas of run-
ning peers, so if one dies then there is another to replace it.

The advantages of a pure Java implementation is that if you can run the Java pro-
gram then you can run the MPI. This means that the program is highly portable
and can be run on any computer without having to specially port it. The dis-
advantages of a pure Java implementation are that there is no platform specific
code and so the performance is said be not that good as with platform specific
libraries.

Although the P2P-MPI is peer to peer it now lacks some qualities present in
common P2P file sharing applications. It can establish TCP connections between
peers, if the peers see each other and the ports are open. However, if the peers are
behind firewalls the TCP connection is not possible. Another P2P functionality
that it is lacking is UDP hole punching. If the P2P application could do this then
we could connect computers form to different networks.

Another drawback is that you must know some configuration information be-
fore starting. For example you must know the host of the super node. Otherwise
P2P-MPI can not get the information of other peers. If the super node is down
or behind a firewall then we simply can not use P2P-MPI.

Another good thing about P2P-MPI is the following, it implements the inter-
face of MPJ [39]. This is an MPI interface that has been modified slightly for
Java. So if there are other Java programs written for MPJ, they can be easily
ported to P2P-MPI.

As an extra feature P2P-MPI has a peer graph visualization tool. It allows
looking up graphically what peers are in the network (Figure 4.1).

4.3 Integrating P2P-MPI

The main focus of this work is practical: Integrating P2P-MPI into the F2F
Computing framework.

16

Figure 4.1: P2P-MPI Grid state visualization (taken from [32])

Within the P2P-MPI integration process the most important changes needed
where in are the Grid construction and the communication logic between peers.
These two issues are the main features of the F2F Computing framework.

The P2P-MPI consists of many services and command line scripts that the
MPI program uses for starting up and submitting jobs. For example the File
Transfer service for distributing your program and super node for easily finding
peers. The submitting of jobs is made in the P2P-MPI with getting the list of
peers from the super node and asking a few services if the peers are available
and may take on new jobs. Similar functionality is already present in the F2F
Computing framework, so the usages of these services from the P2P-MPI will be
removed and be rewritten in F2F.

The F2F Computing framework contains a very good and simple Grid con-
struction and job submission system. You just have to select your friends in the
SIP Communicator and form a chat group with them. Then you can submit your
job to their computers in this chat. After this the job is automatically distributed
and executed.

Porting from the P2P-MPI I will remove the super node system for finding
peers and the services related to submitting and distributing the jobs and let the
F2F Computing framework do this for me.

P2P-MPI uses direct TCP connections for communication between peers, but
F2F takes care of the communication between peers. So I replace the base com-

17

munication logic of the P2P-MPI with the F2F Computing framework.
Another thing that I will rewrite is the initialization of MPI. The initialization

of MPI sends a lot of complex messages between peers and uses the P2P-MPI
services for asking if the peers are available. I replace the message sending calls
and peer synchronization commands with F2F messages, although the main logic
behind the initialization remains the same.

The syntax of MPI functions will remain almost the same as in P2P-MPI.
The only different is that instead of static fields I use non-static. A static field
means that there is only one instance of that object. For example if there are two
MPI task running in the same SIP communicator (same JVM) and they would
use the same static MPI classes, due to of the static class, they would share the
same message buffers too. If we received a message we would not know which of
the task should read it in. In P2P-MPI this is not a problem, as in P2P-MPI,
each program is executed separately from the command line. However this is a
problem in F2F, because all the task will run in the same SIP communicator (same
JVM). To solve this I make all the static fields non-static, like MPI -> MPI() and
MPI.COMM_WORLD -> MPI().COMM_WORLD().

Another difference with P2P-MPI is that the main class of the program must
extend class MPITask and the first run method is runTask() instead main like in
P2P-MPI. MPITask has access functionality for MPI, like MPI() and it extends
the usual F2F Computing frameworks main task.

4.4 Legal issues

One major problem we had with the integration of P2P-MPI into the framework
was the licensing of the program. Namely, the F2F Computing framework is
licensed under LGPL (Lesser General Public License), but the P2P-MPI is licensed
under GPL (General Public License). So we can not publish the F2F-MPI together
with F2F, as the GPL license is more restrictive then the LGPL.

The best solution would be if P2P-MPI would also be under the LGPL license,
because we want a lot of F2F users and do not want to change its license to GPL.
So we wrote a letter to the project advisor of the P2P-MPI Stéphane Genaud
and talked about our problem. He replied that he was interested of providing the
P2P-MPI as widely as possible and gave us a LGPL side license for P2P-MPI, so
we could integrate the program to our systems, without a problem. For that wel
thank Stéphane Genaud.

18

4.5 Features

Every software system has some features and F2F-MPI is no different. The main
features of F2F-MPI come either from Java, the F2F framework or from MPI.
The features of F2F-MPI are:

• Your F2F-MPI programs are easily portable – Your programs will be
Java programs, so if we can run Java on one computer, then we can run
the SIP Communicator with the F2F Computing framework that includes
F2F-MPI on that computer.

• You can port legacy MPI programs to Java and F2F-MPI – Now
F2F-MPI has the MPI commands implemented, in the porting process you
just have to port the C or FORTRAN specific code to Java code and there
will be already existing Java functions for your MPI commands.

• Provides better communication between peers – The F2F Computing
framework provides communication between peers. The peers need not to be
within the same network. The framework can make as well TCP connection
as UDP hole punching, and if that does not work then there is always the
instant messenger channel for peer communication. This is much better, as
P2P-MPI that only supports TCP connection.

• Easier Grid construction – The Grid construction in F2F is simple. You
must just collect some friends, which have F2F installed, in SIP Commu-
nicator and start a chat. Then you can submit your program in there and
the Grid with all these friends in it, is automatically created. You need not
know anything about underlying network and need not worry about firewalls
or the IP addresses of your friends.

• Provides a bigger variety of communication functions for F2F users
– In the standard of MPI there are defined a lot of functions for sending and
receiving information in a collaboration environment. In the F2F-MPI these
functions are implemented and if you decide to use MPI you can use them
for writing your programs, instead of implementing similar ones yourself.

• Possibility for peer fault recovery – Like P2P-MPI the F2F-MPI sup-
ports also synchronized backup peers. This functionality means that you
can have peer groups so that inside one group the contents of the peers is

19

the same (synchronized). One of the peers is the master of the group and
others peers outside the group communicate only with that peer. If the
master of the group dies, then the peer with the lowest sequence number,
in that group, is taken as the new master of the group and the process of
the calculation must not be cancelled. If the last member of such a group
dies, then the calculation can not continue and the process must still be
cancelled. Synchronized backup peers will be made if in the initialization of
the MPI in MPI().Init(...) when the number of peers provided (number
of slave peers * numOfJobsPerPeer) is greater then the number of peers
needed (maxRank).

• Multiple tasks on one peer – Allows you to say that you need to submit
multiple tasks on one peer, so that the F2F-MPI thinks we have more peers.
This feature is not made for performance gain. But main interest behind it
is the testing of MPI programs in an environment where we have only a few
computers. If you have only a few computers and will need to test an MPI
application, with a lot of peers, then it is good if you can make it without
much effort. For example you may submit within the same MPI task to
each peer 5 tasks. Therefore if you have only 2 computers but the logic of
ypur calculation needs at least 10, you can let the framework submit 5 tasks
per peer to get 2*5=10 running tasks. It does not give a performance gain,
but in testing your MPI job you can easily use fewer computers.

4.6 Chapter Summary

It will be good if we have some MPI capability in the F2F Computing framework.
For this reason I integrated the pure Java MPI framework P2P-MPI into the
F2F Computing framework. For the integration I refactored P2P-MPI to use the
functionality of the F2F Computing framework whenever possible. The Features
of the F2F-MPI are:

• Your F2F-MPI programs are easily portable

• You can port legacy MPI programs to Java and F2F-MPI

• Provides better communication between peers

• Easier Grid construction

20

• Provides a bigger variety of communication functions for F2F users

• Possibility for peer fault recovery

• Can run multiple tasks on one peer

21

22

Chapter 5

Implementation

5.1 Implemented commands

The F2F-MPI follows the MPI-1.2 standard of MPI. However, only a subset of
commands is implemented. Here I will name all implemented commands together
with a short command description. The parameters for the communication func-
tions are all very similar, so I will first give list of all the common parameters and
their description. If a parameter is different in a function, then that parameter
description will be included.

buffer – An array, this is used for buffer. Used for sending and receiving the
information in broadcast function. The receiving side of the broadcast must
have the same sized buffer as the sender.

offset – Offset in the buffer. From which array element we start using the ele-
ments in the buffer.

count – How many buffer elements, starting from the count, the function can
use (for sending them or inserting received results into them).

datatype – Of what type the objects are in the buffer (INT, DOUBLE. . .).

sendBuffer – An array, it contains the objects to be sent (same as buffer, but
only for sending) .

sendOffset – Offset in the buffer, from which array element we start using the
elements in the sendBuffer for sending (same as offset, but only for send-
ing).

23

sendCount – How many buffer elements, starting from the count, the function
can send (same as count, but only for sending).

sendType – Of what type the objects are in sendBuffer (INT, DOUBLE. . .)
(same as datatype, but only for sending).

recvBuffer – An array, contains places for the elements we receive (same as
buffer, but only for receiving).

recvOffset – Offset in the buffer. From which array element we start using the
elements in the recvBuffer for receiving (same as offset, but only for
receiving).

recvCount – How many buffer elements, starting from the count, the function
can receive (same as count, but only for receiving).

recvType – Of what type the objects are in recvBuffer (INT, DOUBLE. . .)
(same as datatype, but only for receiving).

tag – A unique tag on the message. To know if the send or received message is
the one we wanted.

op – Says which function to use for reducing the sent data into one result object.

root – Shows if you are the master of the command (The one that sends out the
broadcast message to others etc.).

displs – Says where the data for a specific peer is placed in the buffer, specified
in the order of peers.

sendCount (array) – Combined with displs. Says how many objects will be sent
to a specific peer.

recvCount (array) – Combined with displs. Says how many objects will be
received from a specific peer.

Status – A return object. It says if the receiving was successful or not.

Request – A return object. With it, we can check if the receiving is done or not.
If it is done then recvBuffer contains the result. Otherwise its content is
unknown.

24

5.1.1 MPI().Init(...);

This command initializes the MPI. It must be called at the beginning of the
program before other MPI commands are called (except MPI().Initialized()).
This function may be called only once.

It sends the tasks to all other nodes and starts them. Then it synchronizes
the node communication information, so the peers can send broadcast and other
messages between them. [17]

public void Init([int maxRank[, int numOfJobsPerPeer]]);

The parameters this function takes are:

maxRank - An optional parameter, says how many peers we need in calculation
(master + slaves). If it is 0, then the value is ignored. If there are more
peers than maxRank then the remaining peers will be synchronized peers for
backup.

numOfJobsPerPeer - An optional parameter, says how many slave processes
we submit per peer. If it is 0, then the value is ignored. This value can
be used to make virtual peers. If you have just a few computers in your
disposal then the program handles one peer as it were numOfJobsPerPeer

different peers.

Example usage: Let’s assume we have a master computer and 5 slave com-
puters.

MPI().Init();

Start MPI with all given peers (5) so that there is one slave process for each peer
with no synchronized backup peers. This means we have one master and 5 slave
peers calculating.

MPI().Init(4, 2);

This starts MPI with all given peers (5) so that there are 3 different slaves running.
Each peer has 2 slave processes running. This means we have 5*2=10 slots for
slave processes. The first 3 slots will go to main slaves and the remaining slots will
be made to synchronized slaves, so that when one peer dies then there is another
one to replace it (Figure 5.1).

25

0 1 2 3

4 5 1

2

5

3 4

Master

Main slave

Backup slave

Figure 5.1: Illustrates the use computers in case of MPI().Init(4,2) with 5 slave
computers. Each number represents one computer and the color represents its
role in the calculation.

5.1.2 MPI().Initialized();

Says if MPI().Init() has already been called or not. This is the only command
that may be called before MPI().Init(). [17]

public boolean Initialized ();

Returns if MPI().Init() has already been called or not.

5.1.3 MPI().Finalize();

Must be called at the end of MPI-s work, after this no more MPI commands may
be called. [17]

public void Finalize();

The functions MPI().Init() and MPI().Finalize() must be called at the begin-
ning and end of the programs, because the MPI specification needs them there.
These functions can be done automatically in Java, but as they are in the MPI
specification, they must be called explicitly.

5.1.4 MPI().Wtime();

Name comes from the term wall-clock time and means the current time in seconds
in the local computer. The time is not synchronized with other peers because it
is meant for time measurement in one computer. [27]

26

public double Wtime();

Example usage:

...

double start = MPI().Wtime();

...

The program code

...

double end = MPI().Wtime();

log.debug(“Time spent : “+(start-end));

...

Gives how long it takes to run the program between start and end.

5.1.5 MPI().Get_processor_name();

Returns the names of the host computer and the id of the local peer. We use
MPI as a Grid systems implementation and run it in Java, so the processors name
would make no sense and we use the hostnames of the computer and the local
peers id instead. [16]

public String Get_processor_name();

5.1.6 MPI().COMM_WORLD().Barrier();

Marks a barrier in the program. The program does not continue until all the peers
have reached the barrier. If all peers have reached the barrier then they all are
released at the same time to continue their work. [13]

public void Barrier();

This function can be useful to get all the peers at the same place to collect some
results at the middle of the calculation.

5.1.7 MPI().COMM_WORLD().Size();

It says how many different peers are running in the job. [26]

public int Size();

27

5.1.8 MPI().COMM_WORLD().Rank();

Says which is your rank (order) number in the calculation. The number is between
0 and MPI().COMM_WORLD().Size()-1. If the rank number is 0, it is the master
process. [26]

public int Rank();

Example usage of rank and size:

...

int size = MPI().COMM_WORLD().Size();

int rank = MPI().COMM_WORLD().Rank();

...

if (rank == 0) {

for (int i = 0; i < size; i++) {

...

}

...

} else {

...

}

...

In your MPI program you may need to use the functions rank and size. With
size you can get how many processes are running and then do something for each
process. For example send a message. As in the previous small example the most
common use of rank is to determine if the running process is a master or a slave
process.

5.1.9 MPI().COMM_WORLD().Send(...);

Sends a message from one peer to another. [24]

public int Send(Object sendBuffer, int offset, int count,

Datatype datatype, int dest, int tag);

Unexplained parameter for this function is:

dest – Which peer receives the message.

28

Example usage:

int[] msg = {1,9,2,6,4,1};

MPI().COMM_WORLD().Send(msg, 2, 3, MPI.INT, 3, 9);

Send the numbers 2, 6 and 4 from the array to the node numbered 3. The node
3 must be waiting for a message with Recv and must have an array with 3 free
slots for results. Node 3 must wait for this message with tag 9.

5.1.10 MPI().COMM_WORLD().Recv(...);

A blocking message receiving command. The program will not return until the
requested message is received. [19]

public Status Recv(Object recvBuffer, int offset, int count,

Datatype datatype, int src, int tag);

Unexplained parameter for this function is:

src – The sender of the message.

Example usage:

int[] buff = {2,9,4,6,5,1};

MPI().COMM_WORLD().Recv(buff, 1, 3, MPI.INT, 1, 9);

Receives 3 elements from node 1 and the message is with tag 9. The 3 received
elements are copied in the buffer, starting from position 1. If the send is made
from previous example and the sent elements are 2, 6 and 4 then the result buffer
would be 2, 2, 6, 4, 5 and 1.

5.1.11 MPI().COMM_WORLD().Irecv(...);

A non-blocking message receiving command. After the Irecv is called the pro-
gram must check if the message is already received or not from the retrun object
Status. [18]

public Request Irecv(Object recvBuffer, int offset, int count,

Datatype datatype, int src, int tag);

29

5.1.12 MPI().COMM_WORLD().Sendrecv(...);

Combines the send and receive operations into one command. This functions
sends the sendBuffer to the dest and receives the object sent by source to
recvBuffer. [25]

public Status Sendrecv(Object sendBuffer, int sendOffset,

int sendCount, Datatype sendType, int dest, int sendTag,

Object recvBuffer, int recvOffset, int recvCount,

Datatype recvType, int source, int recvTag);

Unexplained parameter for this function is:

dest – Which peer receives the message sent by the function.

source – From which sender the function receives the message.

5.1.13 MPI().COMM_WORLD().Bcast(...);

Broadcast the message in buffer to all nodes. Every node must call this function
with the same arguments, so the messages would be received correctly. [14]

public void Bcast(Object buffer, int offset, int count,

Datatype datatype, int root);

Example usage:

Object[] buff = {data};

MPI().COMM_WORLD().Bcast (buff, 0, 1, MPI.OBJECT, 2);

Node 2 sends it buffer to all nodes. So if the runner of this code is peer 2 then its
sends its buff content, but if the runner is another peer, like 1 for example, then
that peer receives the message sent by 2 and copies it to its buff.

5.1.14 MPI().COMM_WORLD().Reduce(...):

Collects the sendBuffers from all the peers (including the receiver) and combines
them with the operation op to one object and returns it to the peer that is said
with the root. [20]

30

public void Reduce(Object sendBuffer, int sendOffset,

Object recvBuffer, int recvOffset, int count,

Datatype datatype, Op op, int root);

Example usage:

double[] myval = {value};

double[] val = new double[1];

MPI().COMM_WORLD().Reduce(myval, 0, val, 0, 1,

MPI.DOUBLE, MPI.SUM, 0);

Collects the values calculated by each peer (inside an array with size 1) and then
sums them together into the peer 0 (master peer).

5.1.15 MPI().COMM_WORLD().Allreduce(...);

Collects the sendBuffers from all the peers and combines them with the operation
op to one object and returns it to all peers. Works similarly to Reduce, but all
peers receive the results. [11]

public void Allreduce(Object sendBuffer, int sendOffset,

Object recvBuffer, int recvOffset, int count,

Datatype datatype, Op op);

5.1.16 MPI().COMM_WORLD().Gather(...);

Every peer sends its sendBuffer to the peer with rank root. The root peer
collects the sent information to recvBuffer in the order of peers ranks. Each
peers must send the same amount of data. [15]

public void Gather(Object sendBuffer, int sendOffset,

int sendCount, Datatype sendType, Object recvBuffer,

int recvOffset, int recvCount, Datatype recvType, int root);

5.1.17 MPI().COMM_WORLD().Gatherv(...);

Every peer sends its sendBuffer to the peer with rank root. The root peer
collects the sent information to recvBuffer in the order of peer ranks. Each peer
may send a different amount of data specified by recvCount and displs. [15]

31

public void Gatherv(Object sendBuffer, int sendOffset,

int sendCount, Datatype sendType, Object recvBuffer,

int recvOffset, int[] recvCount, int[] displs,

Datatype recvType, int root);

5.1.18 MPI().COMM_WORLD().Allgather(...);

Every peer sends its information to each other peer. Each peer must send the same
amount of data. When this command has finished done then all the peers have the
same information. It is like Gather, but each peer receives the information. [10]

public void Allgather(Object sendBuffer, int sendOffset,

int sendCount, Datatype sendType, Object recvBuffer,

int recvOffset, int recvCount, Datatype recvType);

5.1.19 MPI().COMM_WORLD().Allgatherv(...);

Every peer sends its information to each other peer. Each peer may send a
different amount of data. I this command is finished then all the peers have the
same information. It is like Gatherv, but each peer receives the information. [10]

public void Allgatherv(Object sendBuffer, int sendOffset,

int sendCount, Datatype sendType, Object recvBuffer,

int recvOffset, int[] recvCount, int[] displs,

Datatype recvType);

5.1.20 MPI().COMM_WORLD().Alltoall(...);

Every process sends distinct data to each other process. Each peer must send the
same amount of data. [12]

public void Alltoall(Object sendBuffer, int sendOffset,

int sendCount, Datatype sendType, Object recvBuffer,

int recvOffset, int recvCount, Datatype recvType);

Example usage: Lets take we have 3 peers and each peers has 3 values to
send to each other one.

32

int[]out = {2,5,6};//peer 1

int[]out = {4,7,8};//peer 2

int[]out = {7,6,5};//peer 3

int[] in = new int[3];

MPI().COMM_WORLD().Alltoall(out, 0, 1, MPI.INT, in, 0, 1, MPI.INT);

The result in output buffer will be:
Peer 1: 2, 4, 7
Peer 2: 5, 7, 6
Peer 3: 6, 8, 5

5.1.21 MPI().COMM_WORLD().Alltoallv(...);

Every process sends distinct data to each other process. Each peer may send a
different amount of data. This function is like Alltoall, but the amount sent
may differ per peer. [12]

public void Alltoallv(Object sendBuffer, int sendOffset,

int[] sendCount, int[] sdispls, Datatype sendType,

Object recvBuffer, int recvOffset, int[] recvCount,

int[] rdispls, Datatype recvType);

Unexplained parameter for this function is:

sdispls – Says where the data for a specific peer is placed in the sendBuffer for
sending.

rdispls – Says where the data from a specific peer should be placed in the
recvBuffer in receiving.

5.1.22 MPI().COMM_WORLD().Scatter(...);

The peer with the number root will send its sendBuffer to all other peers in
equal chunks. So that each peer receives one part of the data. [23]

public void Scatter(Object sendBuffer, int sendOffset,

int sendCount, Datatype sendType, Object recvBuffer,

int recvOffset, int recvCount, Datatype recvType, int root);

33

Example: We have one master and two peers.

int[] cor={4,2,6,7,4,5};

int[] buf=new int[2];

MPI().COMM_WORLD().Scatter(cor, 0, 2, MPI.INT, buf, 0, 2, MPI.INT, 0);

When the master executes this command then it will scatter the inside of cor to
all the peers so each peer receives 2 elements of data. The bufs in each peer will
be:

Master: 4, 2
Peer 1: 6, 7
Peer 2: 4, 5

5.1.23 MPI().COMM_WORLD().Scatterv(...);

The peer with the number root will send its sendBuffer to all other peers in
predefined chunks. So that each peer receives one part of the data. [23]

public void Scatterv(Object sendBuffer, int sendOffset,

int[] sendCount, int[] displs, Datatype sendType,

Object recvBuffer, int recvOffset, int recvCount,

Datatype recvType, int root);

5.1.24 MPI().COMM_WORLD().Reduce_scatter(...);

This function is a combination of reduce and scatterv. The function reduces
the information sent by all peers with operation op and then sends the results
again to everyone. As a result, each peer gets the number of results defined in
recvCount. [21]

public void Reduce_scatter(Object sendBuffer, int sendOffset,

Object recvBuffer, int recvOffset, int[] recvCount,

Datatype datatype, Op op);

5.1.25 MPI().COMM_WORLD().Scan(...);

A reduction of previous peers so that each peer receives the reduced data of
previous peers. For example peer 4 receives the reduced data of peers 0, 1, 2, 3
and 4. For the reduction the operation op is used. [22]

34

public void Scan(Object sendBuffer, int sendOffset,

Object recvBuffer, int recvOffset, int count,

Datatype datatype, Op op);

5.2 Disadvantages of my Implementation

In the process of integrating the P2P-MPI into the F2F Computing framework I
found some issues that had no elegant way of implementation.

One of them is the termination of programs. For example a peer crashes and
there is no way to continue the work. The question is how can we stop that peer
and how can we stop all other peers in this task.

If we had a Java standalone program we could use System.exit() for stopping
the entire program, in case we detect an error or receive a message about it. But
this can not be done in F2F. It would also stop the SIP Communicator with all
other running tasks as well. Another solution is to kill the threads of the task.
But killing threads, is not a good practice in Java [5].

As we can not just close the program the solution was, that if we get a
fatal error or an important peer dies, we put up a flag indicating the MPI
program should be terminated. Now all the MPI commands will throw the
MPITerminateException. When this exception is thrown, the user can let it
propagate and the program terminates on its own or can catch it and do some-
thing that does not involve MPI, before exiting. I such way the program will stop
if all the threads in it try to use some MPI command and get the exception.

The other disadvantage in F2F-MPI compared just to the F2F Computing
framework is the way to start a program. If you start a node in MPI you will
start it with the same class and the same function as you started the master, but
F2F supports starting slave peers from different classes than the master was. This
feature is lost in F2F-MPI.

However, the biggest disadvantage of MPI is that it is defined for a procedure
oriented paradigm and not for the Object-Oriented paradigm that is be more
suitable for Java. For example one deficiency in the specification is that the
message sending functions have to say what type of message they are sending.
But in an Object-Oriented paradigm I can just send the message as an object and
can cast the object to the right type after receiving it. In Java every variable is
an Object so we would not have to write the type of the Object we send, because
it can be asked automatically.

35

For making the MPI a little more Object-Oriented, there are extra implemen-
tations of MPI commands in F2F-MPI, where there is no message type needed.
The message typing is selected in the background by casting the given object to
the right type. These functions syntaxes are the same as described in 5.1, except
there is no Datatype parameter in the syntax.

5.3 Problems in Implementation

The biggest problem that I encountered was with the F2F basic message send-
ing logic. In the local network F2F created a fast TCP connection between the
peers and it sent serialized messages on that connection. For serialization and
deserialization it used a custom serialization class, as it needs to use job specific
class loaders. However, sometimes between some computers the custom serial-
ization does not work properly and the TCP connection in Java broke between
these peers. This error occurred very rarely and only in some specific cases with
complex data structures.

The solution is that F2F-MPI serializes the messages to byte arrays, before
sending them with F2F basic message sending logic. So the serialization process
of the message remains entirely custom logic free and we do not get the connection
reset.

5.4 Conclusions

Overall using the MPI in F2F is very useful. It gives extended functionality like
the Barrier function for synchronization or the broadcast functions for message
sending. You can even port other MPI programs to F2F more easily, as the logic
behind the program remains the same.

For example, now we can port old MPI programs from the DOUG (Domain
Decomposition on Unstructured Grids) [42] system into our framework and use
them there. Or we could create a system like DOUG into the F2F Computing
framework. Then we could solve bigger time consuming mathematic calculations
with our system more easily, without writing a lot of code for it.

MPI has a lot of functions defined in its specification, but in the F2F-MPI we
do not have all the MPI functionality implemented. We have only the commonly
used commands. The other functions should be implemented when there will be
a need for them.

36

The biggest disadvantage in MPI is that it is defined as a procedure oriented
paradigm standard. However, F2F is written in Java which is defined within
Object-Oriented paradigm. It would be better if MPI where Object-Oriented and
could use Object-Oriented features. It would be good if we had a more Java and
F2F like system for supporting Grid computing.

For example one issue that looks bad in F2F-MPI is the syntax of send func-
tions. They all have the type of the message sent in it, but in Java it is not
necessary. I can just ask the class what type it was and then later cast it to that.

The MPI().Init(...) and MPI().Finalize() functions would not be
needed in F2F too, but they are here because of the MPI standard. This func-
tionality can be done automatically in the background by the framework and in
an Object-Oriented manner.

5.5 Chapter Summary

Using the MPI on F2F is good, because it gives us extended functionality. In the
F2F-MPI we have the main MPI commands implemented. For example the Bcast
or the Barrier functions. With them it is much easier to write bigger programs
in F2F without having to think about how to write more complex information
sending functions. There were some difficulties with the porting, but they were
overcome.

37

38

Chapter 6

Examples

6.1 How to run F2F-MPI

The running of MPI programs is exactly the same as running a usual F2F pro-
gram. A long guide can be found at Keio Kraaner’s work on F2F in chapter “F2F
Computing framework in practice” [43].

The main difference in using MPI and usual F2F program is that a F2F Java
programs must extend the class Task, but a F2F-MPI program must extend the
class MPITask. MPITask has extra functionality for accessing MPI commands
and it extends the usual F2F frameworks main class Task. The most important
function in MPITask the programmer must use is MPI(). It gives a handler to
MPI and other MPI functions can be called from there.

For submitting your program, you must package your program to a jar file.
This file must contain your Java files and manifest file. The main class for the
task can be specified with in the F2F-MasterTask attribute. For example:

F2F-MasterTask: ee.ut.f2f.mpi.examples.games.Moving.java

Like in a usual F2F program the framework will execute the runTask() function
from the main class. Now in F2F-MPI the framework will distribute your program
to all your selected friends and submit the task to them.

6.2 Example program

Here I will give an example of F2F-MPI. The goal of this example is to show how
to use the F2F-MPI commands.

39

Because everyone is bored of the endless π examples, I made a pseudo game
as my example. It runs on MPI and uses the MPI commands for communication.
The structure of the game is simple. The master peer holds the role of the Server
and the slave peers are Players. At the beginning of the game the Server gives
each player a coordinate. In each turn a player moves around the table and when
it reaches a square where another Player resides, then the Server will choose one
of them and throw it out of the game. The game ends when there is only one
Player remaining or the turn limit is exceeded.

1 package ee . ut . f 2 f . mpi . examples . games ;
2 import java . u t i l .Random ;
3 import ee . ut . f 2 f . core . mpi .MPI ;
4 import ee . ut . f 2 f . core . mpi . MPITask ;
5 public class Moving extends MPITask {
6 private stat ic f ina l int MAX_STEPS = 30 ;
7 private stat ic f ina l int SIZE = 3 ;
8 public void runTask () {
9 getMPIDebug () . p r i n t l n (" S ta r t i ng MPI commands example game") ;

10 int rank , s i z e ;
11 MPI() . I n i t () ;
12 s i z e = MPI() .COMM_WORLD() . S i z e () ;
13 rank = MPI() .COMM_WORLD() . Rank () ;
14 Object [] buf = new Object [1] ;
15 Random rnd = new Random() ;
16 int [] dead = new int [s i z e] ;
17 for (int i = 0 ; i < s i z e ; i++) {
18 dead [i] = 0 ;
19 }
20 int h = 0 ;
21 int a l i v e = s i z e − 1 ;
22 i f (rank == 0) {// Master (Server)
23 getMPIDebug () . p r i n t l n ("Number o f p l ay e r s : " + (s i z e − 1)) ;
24 int [] [] cor = new int [s i z e] [2] ;
25 for (int i = 0 ; i < s i z e ; i++) {
26 cor [i] [0] = rnd . next Int (SIZE) ;
27 cor [i] [1] = rnd . next Int (SIZE) ;
28 getMPIDebug () . p r i n t l n ("Player " + i + " kord ina t e s : " + cor [i] [0] + " " +

cor [i] [1]) ;
29 }
30 MPI() .COMM_WORLD() . Sca t t e r (cor , 0 , 1 , MPI .OBJECT, buf , 0 , 1 , MPI .OBJECT, 0)

;
31 while (a l i v e > 1 && h < MAX_STEPS) {
32 h++;
33 getMPIDebug () . p r i n t l n (" S ta r t i ng Round " + h + " remaining p l aye r s " +

a l i v e) ;
34 MPI() .COMM_WORLD() . Gather (buf , 0 , 1 , MPI .OBJECT, cor , 0 , 1 , MPI .OBJECT,

0) ;
35 for (int i = 1 ; i < s i z e ; i++) {
36 i f (dead [i] == 0) {
37 getMPIDebug () . p r i n t l n ("Player " + i + " s t ep t to kord ina t e s : " + cor [

i] [0] + " " + cor [i] [1]) ;
38 }

40

39 }
40 for (int i = 1 ; i < s i z e ; i++) {
41 for (int j = i + 1 ; j < s i z e ; j++) {
42 i f (dead [i] == 0 && dead [j] == 0 && cor [i] [0] == cor [j] [0] && cor [i

] [1] == cor [j] [1]) {
43 getMPIDebug () . p r i n t l n (" Players " + i + " and " + j + " are on same

square , one o f them must go") ;
44 dead [(Math . random () > 0 .5 ? i : j)] = 1 ;
45 }
46 }
47 }
48 MPI() .COMM_WORLD() . Bcast (dead , 0 , dead . length , MPI . INT , 0) ;
49 a l i v e = 0 ;
50 for (int i = 1 ; i < s i z e ; i++) {
51 i f (dead [i] == 0) {
52 a l i v e += 1 ;
53 }
54 }
55 }
56 getMPIDebug () . p r i n t l n ("The game i s over ") ;
57 for (int i = 1 ; i < s i z e ; i++) {
58 i f (dead [i] == 0) {
59 getMPIDebug () . p r i n t l n ("Player " + i + " surv ived ") ;
60 }
61 }
62 } else {// S laves (Players)
63 MPI() .COMM_WORLD() . Sca t t e r (null , 0 , 1 , MPI .OBJECT, buf , 0 , 1 , MPI .OBJECT,

0) ;
64 while (a l i v e > 1 && h < MAX_STEPS) {
65 h++;
66 i f (dead [rank] == 0) {
67 int [] mycor = (int []) buf [0] ;
68 getMPIDebug () . p r i n t l n ("Round " + h + " Player " + rank + " kord ina t e s :

" + mycor [0] + " " + mycor [1]) ;
69 for (int i = 0 ; i < 2 ; i++) {
70 mycor [i] += rnd . next Int (3) − 1 ;
71 i f (mycor [i] < 0)
72 mycor [i] = 0 ;
73 i f (mycor [i] >= SIZE)
74 mycor [i] = SIZE − 1 ;
75 }
76 }
77 MPI() .COMM_WORLD() . Gather (buf , 0 , 1 , MPI .OBJECT, null , 0 , 1 , MPI .OBJECT,

0) ;
78 int s t a t e = dead [rank] ;
79 MPI() .COMM_WORLD() . Bcast (dead , 0 , dead . length , MPI . INT , 0) ;
80 i f (s t a t e == 0 && dead [rank] == 1) {
81 getMPIDebug () . p r i n t l n (" I l o s t ") ;
82 }
83 a l i v e = 0 ;
84 for (int i = 1 ; i < s i z e ; i++) {
85 i f (dead [i] == 0) {
86 a l i v e += 1 ;
87 }
88 }

41

89 i f (a l i v e == 1) {
90 getMPIDebug () . p r i n t l n ("Round " + h + " Game over ") ;
91 i f (dead [rank] == 0) {
92 getMPIDebug () . p r i n t l n (" I am the Winner") ;
93 }
94 }
95 }
96 }
97 MPI() . F i n a l i z e () ;
98 }
99 }

Now I will give a detailed explanation how this program works.

Logically the running of the code splits into two slightly different ways. First
I describe the master part and then there comes the slave part of execution.

If you have submitted the program into F2F then the MPI is run as a Master
task. First the runTask() function is executed. If the program reaches line 11
then inside MPI.Init() the MPI will initializes the slave tasks and in each slave
peer the runTask() function is executed. Next the program prepares for starting
the game, it looks how many Players (slaves) we have got and initialize the default
values.

Next the code splits to two. First the master part:

In the master node the first thing to do is to initialize the beginning co-
ordinates of all Players. This is done by giving each Player some random
coordinates (lines 24-29). Next the master must say to each Player what
their coordinates are. For this in line 30 we use the first MPI command -
MPI().COMM_WORLD().Scatter(...). If this command is executed by the master
node then it will send the coordinates in cor to each of the Players. But each
Player will get only its own coordinates. So they do not know where the other
Players reside.

Next there is a loop that last until only one player is left or the turn limit
is reached (line 31). One loop cycle is one turn. In each turn the Players move.
At the beginning of the turn the master asks, all the players, for their new coor-
dinates with MPI().COMM_WORLD().Gather(...) at line 34. This function does
the opposite to Scatter, it collects all the information from slaves and returns
them to master. Now the games prints out to the MPIDebug console where the
Players are at the moment (line 35-39). Next the master will look if two Players
are on the same square, if they are the master selects one of them and puts it
dead. After this the master sends the results with broadcast to all the nodes -
MPI().COMM_WORLD().Bcast(...) at line 48.

42

If there is only one player remaining (lines 49-54) or the turn limit is exceeded
the game will close and the results will be printed (line 56-61). If the game is not
over the program will return to line 32 to ask the Players for new coordinates.

The Player part of the program is the following:
At line 63 the Players will ask the master for their beginning coordinates with

MPI().COMM_WORLD().Scatter(...). After this they will start a loop that goes
on, until the end of the game, like the master. If the Player is not dead then
in lines 66-76 it will get itself some new coordinates and at line 77 it will send
the new coordinates to the server with MPI().COMM_WORLD().Gather(...). For
a slave node the Gather function sends the input buffer to the master.

Next the Player asks the Server for all dead Players with
MPI().COMM_WORLD().Bcast(...). If the player detects that itself has en-
tered the dead Players list (lines 80-82) then that Player will not generate new
coordinates for itself, but will wait until the game is over. At lines 83-94 the
Player will look at the dead Players list and count if the game is over and if it is
the only survivor. Now if there is only one Player remaining or the turn limit is
over then the Players will end their work.

Finally at the end of program, when master and slaves have ended their work,
they both call the MPI().Finalize() in line 97. The result of this program will
be the number of the peer who won the game.

6.3 More example program references

There are a lot more examples of F2F-MPI in SVN [4]. The module inside SVN,
where the examples reside, is java/MPI/. There is an Ant script for packaging
the examples into a jar. The Java code is in the src/ directory. The examples are
ported from the P2P-MPI examples.

In the examples there is a π calculation example that uses F2F-MPI.
The main class is in file ee.ut.f2f.mpi.examples.pi.Pi.java. In the
same directory there is a pure F2F version of the same example too –
ee.ut.f2f.mpi.examples.pi.F2FPi.java.

Some other examples are:
ee.ut.f2f.mpi.examples.Hostname.java – All peers execute

MPI().Get_processor_name() and sent their result to the master task,
which prints them out.

ee.ut.f2f.mpi.examples.fileTransfer.RemoteDataTest.java – Reads a

43

data file from the class path and then sends it to all the nodes, where they check
if they have exactly the same version of the file.

ee.ut.f2f.mpi.examples.mpiCommTest.* – A lot of MPI test programs.
These programs test the different MPI commands.

ee.ut.f2f.mpi.examples.graph.Floyd.java – Finds the shortest path with
Floyd-Warshall’s algorithm.

ee.ut.f2f.mpi.examples.games.Moving.java – The Example program
that was described in the last section.

6.4 Chapter Summary

In this chapter I introduced some MPI example programs that run on the F2F
Computing framework. They can be found at F2F SVN repository at [4]. The
running of the samples is the same as running any other program in the F2F
Computing framework.

44

Chapter 7

Summary

The goal of this master’s work is to get MPI support into our F2F Computing
framework. Additionally I give some example programs on how to use this new
MPI layout and write this thesis about it.

The problem currently with the F2F Computing framework is that it has just
the basic commands for communication and not very much advanced functionality.
It supports easy creation of Grids and point to point communication between
single peers, but for example it does not support larger cooperative functions like
broadcasting to all calculating computers. This is where MPI comes in.

MPI is the de facto standard in distributed and parallel software development.
It specifies a lot of different functions that are useful in writing a distributed
program. If we have an MPI implementation in the F2F Computing framework
then we can take advantages of it.

I had to choose a way to get MPI support to the F2F Computing framework.
Instead of writing a new MPI system from scratch I decided to integrate an
existing MPI system into the F2F Computing framework – the pure Java MPI –
P2P-MPI [32].

The main issue in the integration of P2P-MPI that I changed were the basic
logic behind the MPI, like creating the Grid and the simplistic message passing
between nodes. This logic already exists in the F2F Computing framework, so I
rewrote these parts of P2P-MPI to use our F2F logic instead. If we have basic
communication working between peers then the more complex MPI functions can
be built.

Additionally to the integration of MPI I give some example programs to show
how F2F-MPI works and how it can be used. For this I took the example programs
from P2P-MPI and modified them so that they will work also in F2F-MPI. The

45

issues in the MPI programs that I had to change were the MPI calls. I changed
them from P2P-MPI to F2F-MPI calls.

The MPI in F2F is not a fully implemented MPI. It follows the MPI-1.2
standard and has the common MPI commands implemented, but some of the
commands are still missing.

Now that the F2F Computing framework has the basic MPI support we can
write new programs on it using the MPI commands. We can also port other
existing MPI programs, like the MPI programs from DOUG system, into F2F
more easily, because now we have the corresponding MPI commands.

The goal of giving the F2F Computing framework MPI support has been
reached, but there are certain issues that can be improved. For example MPI is
an old standard and it is defined for a procedure oriented paradigm and not for
the Object-Oriented paradigm. So it would be good if we had a more Object-
Oriented support for distributed computing in our framework. Now that we have
MPI on the framework, we can even think of creating some system for solving
time consuming mathematic calculations in the framework.

All the work on Java programs I made in this work is available from the F2F
homepages http://f2f.ulno.net SVN repository.

46

http://f2f.ulno.net

MPI rakenduste portimine F2F
Gridile

Magistritöö

Andres Luuk

Resümee

Töö eesmärgiks oli täiendada F2F raamistikku MPI (Message Passing Interface
– teadete edastamise liides) toega, mis võimaldab seal lihtsamalt realiseerida pa-
ralleelrakendusi.

F2F raamistik on inglise keeles pikalt välja kirjutatult Friend-to-Freind Com-
puting framework ja eesti keelde otsetõlkes on see Sõbralt-Sõbrale raamistik. F2F
raamistiku arendatakse Tartu Ülikooli Arvutiteaduse instituudi hajusarvutuste
grupis. Selle eesmärk on töölaua võrkraalimise (GRID) programmide realiseeri-
mise ja käivitamise võimalikult lihtsaks tegemine sõltumata keskkonnast (Win-
dows, Linux, Sun). F2F raamistik on kirjutatud Java keeles ja töötab SIP com-
municatori pistikprogrammina.

MPI puhul on tegemist liidesega, mis pärineb juba 90-nendate algusest. Antud
liides on aja jooksul kujunenud harjusarvutuse de facto standardiks ja seda kasu-
tatakse väga laialdaselt. MPI on tavaliselt realiseeritud C, C++ või FORTRANi
jaoks ja Java jaoks sellel palju realisatsioone ei ole.

F2F raamistikule MPI toe lisamiseks võtsin ma aluseks P2P-MPI projekti.
P2P-MPI on Javas kirjutatud MPI raamistik. Töö põhitulem on P2P-MPI in-
tegreerimine F2F raamistikku. Selle saavutmiseks tuli P2P-MPI alusloogika üm-
ber kirjutada. Nimelt tuli see asendada F2F raamistiku poolt pakutava, juba
olemasoleva funktsionaalsusega. Lõppeeesmärk oli MPI täielik integratsioon F2F

47

raamistikku, et MPI programme saaks kasutada nagu tavalisi F2F programme.
MPI tugi F2F raamistikus on vajalik, sest leidub väga palju MPI programme.

Ka Tartu ülikoolil leidub vanu MPI pärandrakendusi. Tänu F2F raamistiku MPI
toele on neid programme lihtsam kohandada F2F Gridile.

Töö käigus said ka kõik P2P-MPI näiteprogrammid F2F raamistikule kohan-
datud. Seega on lisaks MPI toele meil nüüd ka hulgaliselt näiteprogramme MPI
kasutamise kohta, mis F2F raamistikus töötavad.

Kõik tehtud programmid on kättesaadavad F2F kodulehelt http://f2f.ulno.
net SVN hoidlast.

48

http://f2f.ulno.net
http://f2f.ulno.net

Bibliography

[1] Automatic Domain Decomposition on Unstructured Grids DOUG. Available
from: http://dougdevel.org/.

[2] Distributed Systems Group site. Available from: http://ds.cs.ut.ee/.

[3] F2F home page : Install. Available from: http://code.google.com/p/

spontaneous-desktop-grid/wiki/DevelopmentSetup.

[4] F2F home page : SVN. Available from: http://code.google.com/p/

spontaneous-desktop-grid/source/checkout.

[5] Java Thread Primitive Deprecation. Available from: http://java.sun.com/
j2se/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html.

[6] LAM/MPI Parallel Computing. Available from: http://www.lam-mpi.org/.

[7] Message Passing Interface - Wikipedia, the free encyclopedia. Available from:
http://en.wikipedia.org/wiki/Message_Passing_Interface.

[8] Message Passing Interface (MPI) Forum Home Page. Available from: http:
//www.mpi-forum.org/index.html.

[9] Microsoft Message Passing Interface. Available from: http://go.

microsoft.com/fwlink/?LinkId=55930.

[10] MPI - Standard - ALLGATHER. Available from: http://www.mpi-forum.
org/docs/mpi-11-html/node73.html.

[11] MPI - Standard - ALLREDUCE. Available from: http://www.mpi-forum.
org/docs/mpi-11-html/node82.html.

[12] MPI - Standard - ALLTOALL. Available from: http://www.mpi-forum.

org/docs/mpi-11-html/node75.html.

49

http://dougdevel.org/
http://ds.cs.ut.ee/
http://code.google.com/p/spontaneous-desktop-grid/wiki/DevelopmentSetup
http://code.google.com/p/spontaneous-desktop-grid/wiki/DevelopmentSetup
http://code.google.com/p/spontaneous-desktop-grid/source/checkout
http://code.google.com/p/spontaneous-desktop-grid/source/checkout
http://java.sun.com/j2se/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html
http://java.sun.com/j2se/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html
http://www.lam-mpi.org/
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.mpi-forum.org/index.html
http://www.mpi-forum.org/index.html
http://go.microsoft.com/fwlink/?LinkId=55930
http://go.microsoft.com/fwlink/?LinkId=55930
http://www.mpi-forum.org/docs/mpi-11-html/node73.html
http://www.mpi-forum.org/docs/mpi-11-html/node73.html
http://www.mpi-forum.org/docs/mpi-11-html/node82.html
http://www.mpi-forum.org/docs/mpi-11-html/node82.html
http://www.mpi-forum.org/docs/mpi-11-html/node75.html
http://www.mpi-forum.org/docs/mpi-11-html/node75.html

[13] MPI - Standard - BARRIER. Available from: http://www.mpi-forum.org/
docs/mpi-11-html/node66.html.

[14] MPI - Standard - BCAST. Available from: http://www.mpi-forum.org/

docs/mpi-11-html/node67.html.

[15] MPI - Standard - GATHER. Available from: http://www.mpi-forum.org/
docs/mpi-11-html/node69.html.

[16] MPI - Standard - GET PROCESSOR NAME. Available from: http://www.
mpi-forum.org/docs/mpi-11-html/node143.html.

[17] MPI - Standard - INIT/FINALIZE. Available from: http://www.

mpi-forum.org/docs/mpi-11-html/node151.html.

[18] MPI - Standard - IRECV. Available from: http://www.mpi-forum.org/

docs/mpi-11-html/node46.html.

[19] MPI - Standard - RECV. Available from: http://www.mpi-forum.org/

docs/mpi-11-html/node34.html.

[20] MPI - Standard - REDUCE. Available from: http://www.mpi-forum.org/
docs/mpi-11-html/node77.html.

[21] MPI - Standard - REDUCE SCATTER . Available from: http://www.

mpi-forum.org/docs/mpi-11-html/node83.html.

[22] MPI - Standard - SCAN. Available from: http://www.mpi-forum.org/

docs/mpi-11-html/node84.html.

[23] MPI - Standard - SCATTER. Available from: http://www.mpi-forum.org/
docs/mpi-11-html/node71.html.

[24] MPI - Standard - SEND. Available from: http://www.mpi-forum.org/

docs/mpi-11-html/node31.html.

[25] MPI - Standard - SENDRECV. Available from: http://www.mpi-forum.

org/docs/mpi-11-html/node52.html.

[26] MPI - Standard - SIZE/RANK. Available from: http://www.mpi-forum.

org/docs/mpi-11-html/node101.html.

50

http://www.mpi-forum.org/docs/mpi-11-html/node66.html
http://www.mpi-forum.org/docs/mpi-11-html/node66.html
http://www.mpi-forum.org/docs/mpi-11-html/node67.html
http://www.mpi-forum.org/docs/mpi-11-html/node67.html
http://www.mpi-forum.org/docs/mpi-11-html/node69.html
http://www.mpi-forum.org/docs/mpi-11-html/node69.html
http://www.mpi-forum.org/docs/mpi-11-html/node143.html
http://www.mpi-forum.org/docs/mpi-11-html/node143.html
http://www.mpi-forum.org/docs/mpi-11-html/node151.html
http://www.mpi-forum.org/docs/mpi-11-html/node151.html
http://www.mpi-forum.org/docs/mpi-11-html/node46.html
http://www.mpi-forum.org/docs/mpi-11-html/node46.html
http://www.mpi-forum.org/docs/mpi-11-html/node34.html
http://www.mpi-forum.org/docs/mpi-11-html/node34.html
http://www.mpi-forum.org/docs/mpi-11-html/node77.html
http://www.mpi-forum.org/docs/mpi-11-html/node77.html
http://www.mpi-forum.org/docs/mpi-11-html/node83.html
http://www.mpi-forum.org/docs/mpi-11-html/node83.html
http://www.mpi-forum.org/docs/mpi-11-html/node84.html
http://www.mpi-forum.org/docs/mpi-11-html/node84.html
http://www.mpi-forum.org/docs/mpi-11-html/node71.html
http://www.mpi-forum.org/docs/mpi-11-html/node71.html
http://www.mpi-forum.org/docs/mpi-11-html/node31.html
http://www.mpi-forum.org/docs/mpi-11-html/node31.html
http://www.mpi-forum.org/docs/mpi-11-html/node52.html
http://www.mpi-forum.org/docs/mpi-11-html/node52.html
http://www.mpi-forum.org/docs/mpi-11-html/node101.html
http://www.mpi-forum.org/docs/mpi-11-html/node101.html

[27] MPI - Standard - WTIME. Available from: http://www.mpi-forum.org/

docs/mpi-11-html/node150.html.

[28] MPI for Python. Available from: http://mpi4py.scipy.org/.

[29] MPICH-A Portable Implementation of MPI. Available from: http://

www-unix.mcs.anl.gov/mpi/mpich1/.

[30] mpiJava Home Page. Available from: http://www.hpjava.org/mpiJava.

html.

[31] Open MPI: Open Source High Performance Computing. Available from:
http://www.open-mpi.org/.

[32] P2P-MPI Home Page. Available from: http://www.p2pmpi.org/.

[33] Pure Mpi.NET. Available from: http://www.purempi.net/.

[34] Pypar - Parallel Programming in the spirit of Python! Available from: http:
//datamining.anu.edu.au/~ole/pypar/.

[35] ScientificPython. Available from: http://sourcesup.cru.fr/projects/

scientific-py/.

[36] SIP communicator. Available from: http://sip-communicator.org/.

[37] Windows Compute Cluster Server. Available from: http://www.microsoft.
com/windowsserver2003/ccs/default.aspx.

[38] M. Baker and B. Carpenter. Thoughts on the structure of an MPJ reference
implementation. Available from: http://www.npac.syr.edu/projects/

pcrc/HPJava/mpiJava.html.

[39] M. Baker, B. Carpenter, G. Fox, S.H. Ko, and S. Lim. mpiJava: An Object-
Oriented Java interface to MPI. International Workshop on Java for Parallel
and Distributed Computing, IPPS/SPDP, 1999.

[40] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, et al. Open MPI: Goals,
concept, and design of a next generation MPI implementation. Proceedings,
11th European PVM/MPI Users Group Meeting, pages 97–104, 2004.

51

http://www.mpi-forum.org/docs/mpi-11-html/node150.html
http://www.mpi-forum.org/docs/mpi-11-html/node150.html
http://mpi4py.scipy.org/
http://www-unix.mcs.anl.gov/mpi/mpich1/
http://www-unix.mcs.anl.gov/mpi/mpich1/
http://www.hpjava.org/mpiJava.html
http://www.hpjava.org/mpiJava.html
http://www.open-mpi.org/
http://www.p2pmpi.org/
http://www.purempi.net/
http://datamining.anu.edu.au/~ole/pypar/
http://datamining.anu.edu.au/~ole/pypar/
http://sourcesup.cru.fr/projects/scientific-py/
http://sourcesup.cru.fr/projects/scientific-py/
http://sip-communicator.org/
http://www.microsoft.com/windowsserver2003/ccs/default.aspx
http://www.microsoft.com/windowsserver2003/ccs/default.aspx
http://www.npac.syr.edu/projects/pcrc/HPJava/mpiJava.html
http://www.npac.syr.edu/projects/pcrc/HPJava/mpiJava.html

[41] W. Gropp and E. Lusk. Users Guide for mpich, a Portable Implementation
of MPI. Argonne National Laboratory, 1994. Available from: http://www.

es.embnet.org/Doc/Computing/mpi/userguide.ps.

[42] M.J. Hagger. Automatic Domain Decomposition on Unstructured Grids
DOUG. 1998. Available from: ftp://ftp.maths.bath.ac.uk/pub/

preprints/maths9706.ps.gz.

[43] Keio Kraaner. F2F Computing. 2008. Available from: http://code.google.
com/p/spontaneous-desktop-grid/.

[44] A. Lind. NAT Traversal in P2P systems in Java. 2008. Available from:
http://code.google.com/p/spontaneous-desktop-grid/.

[45] Steven Huss-Lederman David Walker Jack Dongarra Marc Snir, Steve Otto.
MPI: The Complete Reference. The MIT Press, 1995. Available from: http:
//www.netlib.org/utk/papers/mpi-book/mpi-book.html.

[46] P. Miller. pyMPI–An introduction to parallel Python using MPI. Livermore
National Laboratories, 11, 2002. Available from: https://computing.llnl.
gov/code/pdf/pyMPI.pdf.

[47] J.M. Squyres and A. Lumsdaine. A Component Architecture for LAM/MPI.
Proceedings, 10th European PVM/MPI Users Group Meeting, pages 379–387,
2003.

[48] Sarah Healy Timothy H. Kaiser, Leesa Brieger. MYMPI-MPI programming
in Python. Proceedings of the International Conference on Parallel and Dis-
tributed Processing Techniques and Applications, pages 458–464. Available
from: http://iec.cugb.edu.cn/WorldComp2006/PDP5055.pdf.

52

http://www.es.embnet.org/Doc/Computing/mpi/userguide.ps
http://www.es.embnet.org/Doc/Computing/mpi/userguide.ps
ftp://ftp.maths.bath.ac.uk/pub/preprints/maths9706.ps.gz
ftp://ftp.maths.bath.ac.uk/pub/preprints/maths9706.ps.gz
http://code.google.com/p/spontaneous-desktop-grid/
http://code.google.com/p/spontaneous-desktop-grid/
http://code.google.com/p/spontaneous-desktop-grid/
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
https://computing.llnl.gov/code/pdf/pyMPI.pdf
https://computing.llnl.gov/code/pdf/pyMPI.pdf
http://iec.cugb.edu.cn/WorldComp2006/PDP5055.pdf

Appendix A

F2F framework

The F2F Computing frameworks homepage can be found at:
http://f2f.ulno.net

There you can find out more information about F2F. There is also a detailed
guide how to set up the F2F Computing framework in your own computer:

http://code.google.com/p/spontaneous-desktop-grid/wiki/

DevelopmentSetup

The code of MPI is included in the F2F Computing framework (inside F2F, in
the directory F2F\src\ee\ut\f2f\core\mpi\...). The code for F2F (including the
F2F-MPI) can be found in its SVN repository:

http://code.google.com/p/spontaneous-desktop-grid/source/

checkout

53

http://f2f.ulno.net
http://code.google.com/p/spontaneous-desktop-grid/wiki/DevelopmentSetup
http://code.google.com/p/spontaneous-desktop-grid/wiki/DevelopmentSetup
http://code.google.com/p/spontaneous-desktop-grid/source/checkout
http://code.google.com/p/spontaneous-desktop-grid/source/checkout

54

Appendix B

MPI Example programs

If the F2F is working in your computer then you can take the MPI examples from
the SVN:

http://code.google.com/p/spontaneous-desktop-grid/source/

checkout

(http://spontaneous-desktop-grid.googlecode.com/svn/java/MPI/)
After checking out all the examples they can be compiled with ant. If you

would like to change the class that the F2F Computing framework suggests for
running, you can to it by changing the class name in conf\MANIFEST.MF. In file
conf\mainclasses.txt there is a list of example MPI programs that are included in
the jar file.

55

http://code.google.com/p/spontaneous-desktop-grid/source/checkout
http://code.google.com/p/spontaneous-desktop-grid/source/checkout
http://spontaneous-desktop-grid.googlecode.com/svn/java/MPI/

56

Appendix C

Timeline

At the beginning 5% of time took the choosing of the topic and making myself
acquainted with it: December 2007 and January 2008.

About 55 % of the time took the programming. The integration of P2P-MPI,
the importing of examples and the debugging that everything works. Mostly from
January to March.

The remaining 40% of the time was spent on writing this thesis. From March
to May.

57

Index

Command : Allgather, 32
Command : Allgatherv, 32
Command : Allreduce, 31
Command : Alltoall, 32
Command : Alltoallv, 33
Command : Barrier, 27
Command : Bcast, 30
Command : Finalize, 26
Command : Gather, 31
Command : Gatherv, 31
Command : Get_processor_name, 27
Command : Init, 25
Command : Initialized, 26
Command : Irecv, 29
Command : Rank, 28
Command : Recv, 29
Command : Reduce, 30
Command : Reduce_scatter, 34
Command : Scan, 34
Command : Scatter, 33
Command : Scatterv, 34
Command : Send, 28
Command : Sendrecv, 30
Command : Size, 27
Command : Wtime, 26
Commands, 23

F2F Computing framework, 13
F2F-MPI, 16, 19

MPI, 9

MPI Forum, 10

P2P-MPI, 15

SIP Communicator, 13

58

	Introduction
	MPI
	What is MPI?
	History of MPI
	Existing implementations
	Chapter Summary

	F2F Computing framework
	What is the F2F Computing framework?
	History of F2F Computing framework
	Chapter Summary

	F2F-MPI
	Why do we need MPI on F2F?
	What is P2P-MPI
	Integrating P2P-MPI
	Legal issues
	Features
	Chapter Summary

	Implementation
	Implemented commands
	Disadvantages of my Implementation
	Problems in Implementation
	Conclusions
	Chapter Summary

	Examples
	How to run F2F-MPI
	Example program
	More example program references
	Chapter Summary

	Summary
	Bibliography
	F2F framework
	MPI Example programs
	Timeline

