
Modeling Grid Applications

Christian Pöcher

Diploma Thesis
Aachen, May, 8, 2007

Prepared at the Chair of Distributed Systems
University of Tartu

Presented at the RWTH Aachen University

First examiner: Prof. Dr. Eero Vainikko
Second examiner: Prof. Dr. Felix Wolf

Supervisor: Dipl.-Inform. Ulrich Norbisrath



ii

One day I realized that sadness is just another word for not
enough coffee.

Dilbert



iii

Abstract

At the moment GRIDs shift from batch processing to service oriented architectures.
With the use of services, GRID application composition becomes possible. It is necessary
to preserve existing legacy software and make it available to service oriented GRIDs even
if the architecture is different. In this thesis a case study is done that shows how legacy
applications can be refactored to fulfill the non-functional requirements of a component.
The application is then wrapped as a Web Service. It is shown that the application can
be reused by another component to form a higher order service. Then a way is shown
how to split off components from a legacy application to increase flexibility and reuse.



iv

Acknoledgement

This work was possible only because of the support of many people. Especially, I
would like to thank:

• Prof. Dr.. Eero Vainikko for offering me the chance to do a very interesting
thesis in a very interesting country, for making sure all my needs were taken
care of and for the organization of our weekly ”workshops”,

• Dipl. Inform. Ulrich Norbisrath for inviting me to join him to Tartu and for
all the constructive criticism, that improved this thesis so much,

• Prof. Dr. Felix Wolf for his lecture on GRID computing and for co-evaluating
my thesis,

• BSc Oleg Batrashev for his invaluable testing framework, the cookies and
the great discussions we had,

• Daniel Arruda, Manuel Anaya and Björn Kuhlmann, my international team
of proof readers and

• my family, who always supported me, even though they are in a difficult
situation themselves.



v

Hiermit versichere ich, dass ich die Arbeit selbstständig
verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt sowie Zitate kenntlich gemacht
habe.

Aachen, 8.Mai 2007 Christian Pöcher



vi



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Definition of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.4 Service Oriented Architecture . . . . . . . . . . . . . . . . . 6
1.3.5 Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.6 Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Solution Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Used Techinques 9
2.1 Web Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Web Services Description Language . . . . . . . . . . . . . . . . . . 10
2.3 Message Passing Interface . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 UML component diagram . . . . . . . . . . . . . . . . . . . . . . . 16

3 Current Research 21
3.1 GRIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Componentizing legacy applications . . . . . . . . . . . . . . . . . . 25
3.3 DOUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Refactoring Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Necessary Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 DougService 33
4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Component technology . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Component scope . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 DougService — Wrapper for DOUG . . . . . . . . . . . . . . 35
4.1.4 IterativeEigenvalueSolver – Calculating Eigenvalues . . . . . 37

vii



viii CONTENTS

4.1.5 Interoperability with text and binary data files . . . . . . . . 38
4.2 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Control file vs. set of default CLI parameters . . . . . . . . 39
4.2.2 Two executables . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Smelly: Code Duplication . . . . . . . . . . . . . . . . . . . 41
4.2.4 Refactoring with Fake Polymorphism . . . . . . . . . . . . . 44
4.2.5 Streaming vs. Attachments . . . . . . . . . . . . . . . . . . 48
4.2.6 Debugging the RPC . . . . . . . . . . . . . . . . . . . . . . 49
4.2.7 Build process . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.8 Limitations of the prototype . . . . . . . . . . . . . . . . . . 52

4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Size of SOAP message . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Compressing XML . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3 Memory cosiderations . . . . . . . . . . . . . . . . . . . . . 56

4.4 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Extraction of the preconditioner 59
5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 First Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Second Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Replacing MPI communication . . . . . . . . . . . . . . . . . . . . 65

6 Related work 69

7 Conclusion and outlook 71



Chapter 1

Introduction

1.1 Motivation

The history of semiconductors is characterized by an exponential increase of per-
formance metrics commonly called Moore’s Law. While Moore’s Law held for four
decades, Moore himself states that the law might soon be no longer valid because
a fundamental limit is reached [Dub05]. Even now, the energy consumption limits
the increase computational power of single core CPUs which is why multi core
CPUs are becoming available on the market. When increases in CPU performance
will get smaller, distributed computing gets more and more important because
applications like climate and weather simulations [SKM+02] or the CERN Large
Hydron Collider [LCG05] but also all other kinds of applications still demand
more and more power. The GRID offers computational power and storage on de-
mand and can be viewed as a huge virtual computer. Still, problems in GRID
computing are very similar to most distributed computing environments: Latency
between processors can make parallelization impossible, typical GRID applications
are hard to develop and even harder to debug and parallel algorithms are often
much harder to understand than their serial counterpart.

At the moment GRIDs shift from batch processing to service oriented archi-
tectures. While service-oriented GRID frameworks are already available and some
production GRIDs are doing the migration, most GRID users are still thinking and
talking in terms like libraries, scripts and executables instead of services and com-
ponents. Not only the terms used by typical users but also software engineering
support is lagging behind. Most modeling tools focus on object oriented methods
but GRID users often use Fortran or C for their applications.

This thesis will focus on DOUG a typical old-style GRID application with
very large computational and memory demands. Using DOUG as an example,
this thesis will explore how legacy applications can be made available as a Web

1



2 CHAPTER 1. INTRODUCTION

Service and how they can be refactored to benefit even more from a service oriented
architecture.

In detail, the thesis will show how a wrapper around DOUG can be used to form
a Web Service. To show the possibility of application composition on the GRID,
an Eigenvalue solver is built that uses the DOUG Web Service as component
while it is exposed itself as a Web Service. Different approaches will be examined
for the construction of the exchanged messages. As a result the formats of the
data files of DOUG will be changed so that interoperability as well as efficiency is
achieved. Structured refactoring of the Fortran code of DOUG will be examined
and a candidate for a refactoring pattern will be presented. Finally an architecture
for componentization of DOUG application will be described and its properties are
explained.

1.2 Overview

In the next section some important terms are defined which are either ambiguous
or might not be known to the reader. Chapter 2 explains the most important
techniques used in this thesis. After the base of the thesis is covered, the current
research is described in chapter 3. There it is explained how modern GRIDs are
built, what research has been done in the field of componentizing legacy applica-
tions, what DOUG is and which challenges the developers of it face and at last a
current overview of refactoring in Fortran.

There are two distinct programming examples described in this thesis. The first
is the creation of an Eigenvalue solver using DOUG as a whole as a component.
The solver itself is also exposed as a component and easy to run in a service
oriented architecture. Design and implementation issues are illustrated in chapter
4. A special focus was put on refactoring and the data exchange formats.

The next chapter is about splitting off the preconditioner as component, an
integral part of DOUG, so that it can be used externally by other applications
or exchanged at will easily or even dynamically. Although it has not been imple-
mented for doubts regarding performance, the findings in the architectural design
phase are given and hints for future work in componentization of legacy applica-
tions are pointed out.

Work of researchers which is related to this thesis is outlined in chapter 6. In
chapter 7 the findings are summarized and recommendations for future work based
on the findings are given.



1.3. DEFINITION OF TERMS 3

1.3 Definition of terms

In this section definitions of several important terms a given, either because some
readers might be unfamiliar with them or because there is no clear consensus on
the definition. In the latter case other definitions are discussed, after which the
definition that serves as the base for this thesis is given.

The section is structured into different parts, therefore readers with a strong
background in a field can safely skip the corresponding part.

1.3.1 Component

Different definitions exist for the term component. There is general agreement that
a component is a unit of software that has some defined purpose and capability
is independent and can be composed with other components so that they form a
component based software system.

Councill and Heinemann [CH01] were the first to define a component. Their
definition is as follows:

A software element that conforms to a component model and can be
independently deployed and composed without modification according
to a composition standard.

Their definition focuses on the standards involved in component development,
deployment and usage. It also emphasizes that a component’s behavior should
only be influenced by the input data and the configuration not by modifications
to the code. It describes the value of a component for an enterprise.

Szyperski [SGM02] focuses more on a description of the characteristics:

A software component is a unit of composition with contractually speci-
fied interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composition by
third parties.

He also mentions that standards are involved but he limits his observation to the
contracts that make up the interfaces. All dependencies should be explicit that is
either through the interfaces or through documentation.

In order to be practical, the author combines some aspects of the former defi-
nitions. For this thesis, the term is defined as follows: A software component

• is an independent unit. It can be compiled and used without other non-
declared dependency. Usage of required sub-components is declared therefore
components can be composed from existing entities.



4 CHAPTER 1. INTRODUCTION

• uses standardized communication, lifecycle and deployment facilities. It can
but does not have to use a middleware (see below) that implements these.

• has defined provides and requires interfaces and — if the interface alone is not
sufficient — a document describing the contracts of using those interfaces.
Other dependencies should be avoided but have to be documented if they
exist.

• must exist as a deployable package.

• must have at least a documentation of the syntax of the component’s inter-
faces so that users can utilize the component in their software.

• can be exchanged if used in a component-based software development process
and the contracts that is interfaces and semantics match.

Although the author sees a fine distinction between the terms service (see chap-
ter 1.3.5) and software component, they are very similar. The main difference is
that components are implementations of services. This also reflects in the sim-
ilarities of the definitions of components and Web Services, which share similar
properties. Web Services will be explained in chapter 2.1.

1.3.2 Middleware

A middleware is a runtime environment that offers functionality that should not
put directly into the application. It separates logic code (a.k.a. business logic)
from physical code (e.g. protocol classes) and is mainly used in distributed system
environments. If the access to the physical layer is only done through the Ap-
plication Programmer’s Interface (API) of the middleware, the application does
not depend on the physical layer e.g. the operating systems network protocol im-
plementations. That application can then be run on any host that can run the
middleware and is decoupled from underlying physical properties of the host. In
general, middleware replaces non-distributed functions of the operating system
with distributed functions (e.g. remote procedure calls, distributed databases and
also CPU sharing in GRIDs) thus making the application network-aware.

A look onto figure 1.1 explains why this layer is called middleware: It resides ”in
the middle” between the logic layer with its business applications that implement
the solution to a domain related problem and the physical layer that implements
the infrastructure like network protocols. The integration of applications becomes
possible since the applications do not rely on different communication protocols of
different platforms but on standardized communication of the middleware [Ber96].
In figure 1.1, a communication between two business applications aided by middle-
ware is shown. The initiating application calls the API of the middleware which



1.3. DEFINITION OF TERMS 5

Logic Layer (e.g. 
Business Applications)

Physical Layer 
(e.g. Network)

Middleware

Figure 1.1: Communication aided by middleware.

handles interoperability issues and does the necessary communication through the
physical layer. The middleware — either on a different host or on the same —
processes the message from the network and presents the result to the receiving
application.

1.3.3 Module

Although the term module will not be used in this thesis, it will deepen the un-
derstanding of the concept of a component by focusing on the differences between
those two. Modules have been around in computer science for a few decades now
and have been made integral parts of several older languages like Pascal, Ada and
Fortran 90.

A module is a structural unit of software which can (ideally) be compiled
independently and which has defined interfaces. It cannot be as easily exchanged as
components. Usually the same platform and compiler must be used and the actual
module exchange cannot be done while running the application (”hot swap”). A
component framework can support hot swap which will be important for upgrading
GRID services.

Sometimes the term module is also used as a synonym for plug-in. Plug-ins are
usually made in a way that they implement certain interfaces of a host application.
Therefore they are only useful with that specific application. While they can be
exchanged — sometimes even in hot swap manner — those plug-ins cannot be
reused in a different application. In this sense plug-ins are less sophisticated than
components.

While of course modules are used in the DOUG application source to structure



6 CHAPTER 1. INTRODUCTION

the code, they are not sufficient for the goal of the thesis because of the lack
of independence and reuse. Also plug-in modules are not adequate. Therefore
components defined as above had to be used.

1.3.4 Service Oriented Architecture

A Service Oriented Architecture (SOA) implements an architectural model not
only for IT but also for the way a business is structured. The concept of SOA
was developed by extending the scope of software structures but nowadays also
includes other stake holders. It can be considered as a blueprint for enterprises
how to structure IT-related business to benefit from increased flexibility.

Consumer

Service Components

Operational Systems

Business Process

Service

Portlets GUI

Composite services

Data
base

Legacy app CRM, ERP

Figure 1.2: Five layers of an service oriented architecture [Ars04]

For IBM, Arsanjani [Ars04] has defined an abstract view on SOA by identifying
seven different layers to an SOA. The five main layers1 depicted in figure 1.2 are:

1Arsanjani keeps expanding and refining his architecture model but the five layers presented



1.3. DEFINITION OF TERMS 7

• Consumer Layer: Any consumer of a service is in this layer.

• Business Process Layer: A business process can use just one service or or-
chestrate several services e.g. with BPEL.

• Service Layer: The services and their documentation are in this layer.

• Service Components: The actual implementation of a service which can use
a multitude of technologies e.g. EJB, .NET or Web Services.

• Operational Systems and Data: Legacy systems and data storages are on
this level.

This abstract view will serve as a base for this thesis. Now we have the tools
to finally define the term service.

1.3.5 Service

There is no consensus of a definition of the term service. When people are talking
about services, they often have Web Services (see below) in mind ignoring the
fact that a service could be much more. The authors of [PL03] have a very broad
definition of a service that includes consumer, technical, provider and business
perspectives which all define a service. Therefore they are defining a service in a
broader meaning than just the layers that IBM referred to in their architecture
model. This does not help the work for this thesis because it is still very vague
about what to do to create a service. In other words, their definition is not
operationally enough.

Therefore the term service will be defined with the help of IBM’s SOA archi-
tecture model. By referring to a service in this thesis an entity of the third layer
is meant. A service should have a certain set of functionalities and dependen-
cies that are exposed by provides and required interfaces. The interfaces must
be documented in a way that makes them available for consumers. While it may
ok to have a provides interface with the operation doTheDance(int i), it is only
valid for a service if documentation explains in detail what to expect from this
operation. The service definition fixes the contract of the interfaces.

On the other hand, implementation is not scope of a service anymore. With
the fixed contract, the implementation as well as the technologies used for imple-
mentation can change. This would reside on the forth layer of the architecture
model.

To summarize this into one sentence: Services are defined separately and im-
plemented by service components.

here are the core of the model. More information is published regularly on Arsanjani’s blog.



8 CHAPTER 1. INTRODUCTION

1.3.6 Discrimination

It is important to emphasize the relation of the terms defined in this chapter. They
are distinct only by subtle differences. Generally spoken, they form a hierarchy in
terms of abstractness (see figure 1.3): A SOA is purely abstract, a service is less
abstract and a service component is even more concrete.

concrete

abstract
SOA

Service

Service component

Figure 1.3: The main terms introduced here are abstract to a different degree.

Why is that so? A SOA is an architectural model defining how the system
is structured. A service is one entity within an SOA which already has a clear
function within the system and has defined interfaces. A service component is a
component that implements at least part if not all of the service’s logic.

The distinction between a component and a service component is that the latter
is used by a service. There are component frameworks that are not built to form
a SOA, for example ActiveX or OLE [Cha96].

1.4 Solution Sketch

Taking the definition of a component as a list of requirements, the legacy applica-
tion DOUG will componentized in two steps. First, DOUG will be used to form a
component which contains all of DOUG to make it available in SOAs like modern
GRIDs. DOUG will be refactored internally and later extended by introducing a
new data format that introduces independence of platform and compiler for the
first time. The possibility of application composition will be proven by building
an Eigenvalue solver that uses this component. Afterwards, it will be looked into
splitting DOUG into several components to make the parts of it available as build-
ing blocks of GRID applications and to exchange single components of DOUG very
fast for evaluation of new algorithms.



Chapter 2

Used Techinques

In this chapter some of the used techniques will be explained briefly. A basic
understanding of those is necessary for the work described later. First Web Services
are explained, a technique to implement components and services, which is the base
of modern GRIDs. The capabilities of Web Services, namely the interfaces, their
semantics (as comments) and the bindings to a transport are described by the Web
Service Description Language which is explained next. After that an introduction
to the Message Passing Interface is given which is important for chapter 5.

2.1 Web Service

Web Services (WS) are one specific technique to implement services. At first
invented by IBM and Microsoft Corporation, the standards are now governed by
the W3C and define a way to do application integration. Because the W3C oversees
specification work in the family of WS standards, interoperability between different
WS frameworks is relative good although not totally without problems.

The definition of a Web Service has changed over the passing of time. The
current definition by the W3C is as following:

A Web Service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web Service in a manner prescribed by its
description using SOAP messages, typically conveyed using HTTP with
an XML serialization in conjunction with other Web-related standards.

In figure 2.1 is an example SOAP message that occurred in the work for this
thesis. A more abstract description of SOAP can be found in [KNN03]. As a
funny side note, it should be noted that originally SOAP meant Simple Object

9



10 CHAPTER 2. USED TECHINQUES

Access Protocol but critics claim that SOAP is neither simple nor used for object
access [Vog03]. Today the term SOAP is not considered an abbreviation anymore.

The benefits of Web Services include the formulation of well defined, non-
propietary standards. Compared with older techniques such as CORBA, the stan-
dards reach much farther and leave less ambiguities. The number of standards in
the WS-* family is still increasing steadily on one hand showing the need to solve
specific problems of Web Services but on the other hand removing insecurities in
interoperability. Web Services are loosly coupled leading to more modularity and
flexibility. Since Web Services are defined dynamically, they can be upgraded au-
tomatically if the interfaces do not change. Because SOAP messages are human
readable debugging is fairly easy.

The most often pointed out problem of Web Services is inferior speed compared
to competing middleware technologies like CORBA, because non-binary messages
are used. In [PTL04a] the authors experimentally compared Web Services with
(the less flexible) MPI. In the example in listing 2.1 the size of the message is 1638
byte compared to 72 byte in binary payload of the message. That is an increase
of 2275%. Because messages can get big so easily, a lot care has to be taken to
minimize the necessary communication between services and service consumers.

Two techniques should be mentioned here because they could be considered
as successor of Web Services. First this is Representational State Transfer, more
commonly known by it’s abbreviation REST. It was first mentioned in [Fie00] and
is supposed to be less bulky than Web Services. Often commercial enterprises offer
both a Web Service and a RESTful service. Problematic with this architectural
model is that it is hard to develop state-aware services.

An extension of Web Services is the second technique that shall be mentioned
here: The Web Service Resource Framework (WSRF) which adds stateful resources
to Web Services. WSRF is the base of modern GRID systems. More about WSRF
will be explained in chapter 3.1.

2.2 Web Services Description Language

The Web Services Description Language (WSDL) [CCMW01] describes several
elements of Web Services. Those are:

• types: Data type definitions besides those that are know to the system per
default. Usually XML Schema Definitions (XSD) are used for that purpose.

• messages: The typed data that is transferred when calling operations.

• operations: The description of the operations that the service offers.

• port types: An abstract set of operations that endpoints offer.



2.2. WEB SERVICES DESCRIPTION LANGUAGE 11

HTTP /1.1 200 OK
Server: Apache -Coyote /1.1
Content -Type: text/xml;charset=utf -8
Date: Sat , 11 Feb 2006 11 :33:16 GMT
Connection: close

<?xml version="1.0" encoding="UTF -8"?>
<soapenv:Envelope
xmlns:soapenv="http:// schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org /2001/ XMLSchema"
xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance">
<soapenv:Body >
<ns1:runAssembledResponse
soapenv:encodingStyle=

"http:// schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="http://doug.math.ut.ee/">
<runAssembledReturn href="#id0"/>

</ns1:runAssembledResponse >
<multiRef id="id0" soapenc:root="0"
soapenv:encodingStyle=

"http:// schemas.xmlsoap.org/soap/encoding/"

xsi:type="ns2:DoubleVector"
xmlns:soapenc="http:// schemas.xmlsoap.org/soap/encoding/"
xmlns:ns2="http://doug.math.ut.ee/">
<vector soapenc:arrayType="xsd:double [9]"
xsi:type="soapenc:Array">
<vector xsi:type="xsd:double"> -1.3248258958028 </vector >
<vector xsi:type="xsd:double">1.371192505789 </vector >
<vector xsi:type="xsd:double"> -0.9431052535296 </vector >
<vector xsi:type="xsd:double">0.83135799644846 </vector >
<vector xsi:type="xsd:double"> -2.7102213579422E-4</vector >
<vector xsi:type="xsd:double">0.29152348710796 </vector >
<vector xsi:type="xsd:double"> -0.17966396898322 </vector >
<vector xsi:type="xsd:double"> -0.24831102223255 </vector >
<vector xsi:type="xsd:double">0.20205667328996 </vector >

</vector >
</multiRef >

</soapenv:Body >
</soapenv:Envelope >

Listing 2.1: A typical SOAP message



12 CHAPTER 2. USED TECHINQUES

• binding: A binding specifies which port type is offered over which network
protocol.

• port: A concrete endpoint which is a combination of a binding and a network
address at which the operations can be reached.

• service: A collection of endpoints that are related. This is what is usually
called a service.

Optionally, it can also contain documentation. In theory, a WSDL file is a
good starting point to build a Web Service because it forces the programmer to
think about the contracts first. In practical work though, most developers decide
to write the service first and then generate the Web Service description because it
seems easier that way. Note that this violates the contract-first-principle of Web
Services. Maybe over time tools are being developed, which make creating WSDL
files more easily.

The WSDL files created for this thesis are too long to print them here therefore
a smaller example has been given in listing 2.2. This service can be found at the
(hypothetical) end point address URI http://example.com/getTerm. It has one
port with the name glossaryTerms which has only one operation called getTerm.
This operation has an input and an output message so it is a request-response
operation. The messages are specified in the <message> tags and consist of one
string each. In the <binding> tag you can see that HTTP transport is chosen
with literal encoding for both input and output. A more comprehensive example
can be found in [CCMW01].

2.3 Message Passing Interface

To understand how DOUG achieves parallelization and to evaluate the problems of
the usage of the Message Passing Interface (MPI) on GRIDs one must have knowl-
edge about MPI at least on a conceptual level. In this section a basic intoduction
into MPI is given. For a more complete MPI tutorial have a look at [Nat].

MPI is a technique to allow coordination of a program running as multiple
processes in a distributed memory environment. It is standardized [For] therefore
code which uses MPI can be run on any machine that has the MPI library installed.
The specification is limited to defining operations, their signature and semantic but
not the protocol or the implementation. A huge variety of MPI implementations
is available some of them with very special feature. An example of a popular
implementation is LAM/MPI [BDV94] which is also used for the development of
DOUG. Examples for special purpose MPI are MPICH-G2 which is a grid-enabled



2.3. MESSAGE PASSING INTERFACE 13

<?xml version="1.0"?>
<definitions name="getTerm"

targetNamespace="http:// example.com/getTerm.wsdl"
xmlns:soap="http:// schemas.xmlsoap.org/wsdl/soap/"
xmlns="http:// schemas.xmlsoap.org/wsdl/">

<message name="getTermRequest">
<part name="term" type="xs:string"/>

</message >

<message name="getTermResponse">
<part name="value" type="xs:string"/>

</message >
<portType name="glossaryTerms">

<operation name="getTerm">
<input message="getTermRequest"/>
<output message="getTermResponse"/>

</operation >
</portType >
<binding type="glossaryTerms" name="b1">
<soap:binding style="document"
transport="http:// schemas.xmlsoap.org/soap/http" />

<operation >
<soap:operation
soapAction="http:// example.com/getTerm"/>

<input >
<soap:body use="literal"/>

</input >
<output >

<soap:body use="literal"/>
</output >

</operation >
</binding >

</definitions >

Listing 2.2: An example WSDL file



14 CHAPTER 2. USED TECHINQUES

implementation of MPI or Fault Tolerant MPI (FT-MPI) which can survive the
crash all but one processes of the job and restart the crashed jobs.

One can distinguish two different parallel computer architectures: distributed
memory and shared memory. Distributed memory parallel computers work on the
same problem, but each of the serial computers involved has rapid access to it’s
local network, while access to the memory of other computers is given through
the exchange of messages over a network. Shared memory computers have several
processors that access the same global memory using a high-speed data bus. The
number of processors in a shared memory parallel computer is usually limited to
2-16 because the memory bus becomes a bottleneck. Nowadays, parallel computers
often use a mixed shared/distributed memory architecture in which groups of 2-
16 processors are considered one node and several nodes are interconnected by a
network. MPI is used to build a software infrastructure to send messages in a
distributed memory environment.

While MPI uses message passing via library calls from a vast variety of stan-
dard programming languages directive-based data-parallel languages use a different
approach: Serial code is made parallel by adding directives as comments into the
code which are then used by the compiler to decide how data and work is dis-
tributed on the processors. The details of this process is left to the compiler.
Popular examples are High Performance Fortran (HPF) and OpenMP. They are
usually used in shared memory architectures because the unified memory space
makes it easier for compiler developers to improve performance.

MPI assumes a standard model of parallel computation. In this model a parallel
computation consists of a number of processes that work some local data each. The
processes have only local variables. There is no mechanism to access the other
processes’ variables directly. Instead, data sharing is done by exchanging explicit
messages between processes. A process does not necessary have to run on exactly
one processor. It is possible to start several processes that share one processor.

As mentioned before, MPI uses function/subroutine calls from a library to
achieve its functionality. The calls can be classified in four groups:

• Calls to initialize, manage and terminate communications.

• Calls for point-to-point communication.

• Calls to perform communications involving a group of processors.

• Calls to create new data types.

Here only the second and third group are explained. For deeper knowledge
seek the literature, for example [Nat].



2.3. MESSAGE PASSING INTERFACE 15

Point-to-point communication refers to one process that sends a message and
one that receives this message. Both sides must declare that they want to send/re-
cieve with a MPI call: Not only an explicit send is required, but also an explicit
receive. This is sometimes also called two-sided point-to-point communication.

A send or receive consists of an envelope in which sender and receiver are spec-
ified and the body which contains the payload data which is actually transferred.
In each MPI send or recieve the body has to be specified by three parameters:

• The buffer which is the starting location of the memory in which the outgoing
data can be found or the incoming data can be stored. This is for example
an array variable in Fortran.

• The data type which is to be sent. This can be a primitive type that is
already built into MPI or a arbitrary user-defined type.

• The count which is the number of items of that type to be sent. Note that
the size of one item in bytes is determined by MPI through the specification
of the data type.

A send can be either blocking or non-blocking. With a few exceptions, there
are blocking and non-blocking versions of every MPI send or receive call. A block-
ing send or receive only returns from the subroutine call when the operation is
finished. The programmer can rely that all data is accessible and can be used or
overwritten. The downside is that the computation is stopped while the commu-
nication is taking place. Non-blocking sends or receives return directly after the
subroutine call. The communication is done in the background. The programmer
can test later if the communication is finished or issue a wait statement which
forces computation to stop until the data is completely sent or received. During
the communication the programmer cannot assume that the buffer variables can
be used or overwritten. Non-blocking communication interleaves communication
and computation and helps therefore to speed up programs. The downside is that
those programs are harder to write and maintain.

More complex communications, which involve a number of processes, are also
standardized and called collective communications. These routines could be com-
posed by point-to-point send and receive statements by the application program-
mer but this is inferior because the code needed for that is often complex and thus
error prone. It would make the code less readable. Also several non-obvious perfor-
mance enhancements can be made which need expert know-how. In [CHPvdG04]
it is claimed that even in the most popular MPI implementations the optimum
is not yet reached. While collective communications define one-to-all, all-to-one
or all-to-all schemes, the scope of the operations can be narrowed down by us-
ing communicators which build sub-groups thus achieving e.g. one-to-all-in-group



16 CHAPTER 2. USED TECHINQUES

communication. It would exceed the scope of this introduction to go into those in
detail.

A broadcast is the simplest kind of collective communication. In this one-to-
all operation the sender sends a copy of some data to all other processes. The
operation is illustrated in figure 2.1. As an example, let there be four processes P1
to P4. At one distinctive memory position — the buffer — they have all different
data stored. This is shown by the characters A, B, C, and D. The initiator of the
broadcast sends a copy of its data, that is A, to all other processes which overwrites
the data in the memory. After the operation all processes have the data A in the
buffer.

Gather is a all-to-one operation that fetches data from all processes and ar-
ranges them in the buffer of one process. Assume the data is distributed in pro-
cesses P1 to P4 and the send buffer contains is A, B, C and D as in 2.2. One
process, here P1, gets all the data, concatenates and stores it in the receive buffer.
The other processes’ memory is not altered.

The operation AllGather (see figure 2.3) is a variant of Gather, in which the
gathered data is transferred to every node instead of just the root node. The
result is the same as in the last example but the data sequence ABCD is now in
all processes P1 to P4.

Scatter operations are exactly the opposite of Gathers. They distribute some
data equally to all processes. Assume P1 has ABCD in memory then P1 copies A
into its receive buffer, P2 gets data B, P3 gets data C and P4 gets data D. Note
that the send buffer of P1 containing ABCD is not overwritten.

The last class of collective communication are the reduction operations. A
reduction performs a basic calculation (e.g. sum, minimum or logical operations)
on data distributed in the send buffers of several processes and stores the result
into receive buffer of the root process. A diagram is shown in figure 2.4. The
send buffers contain the integer numbers 1, 3, 0 and 3 in the send buffers on the
processes P1 to P4. In this example, they are gathered and summed up. The
result of 7 is stored in the receive buffer of P1.

2.4 UML component diagram

The Unified Modeling Language (UML) is a graphical specification language used
to help software architects and developers to model object-oriented systems in an
abstract way. Therefore, they can focus on the design and hide the details until
later. Because of the graphical notation, UML diagrams are more intuitive for
most humans than text. By defining a standard set of diagrams, it is assured that
the diagrams can be used to communicate with other specialists. The first version
of UML was released in 1997 and was followed by the current UML 2.0 in 2004 and



2.4. UML COMPONENT DIAGRAM 17

A

D

C

B

A

A

A

A

P1

P2

P3

P4

P1

P2

P3

P4

Figure 2.1: Communication schema for MPI Broadcast

A

D

C

B

A DCB

D

C

B

P1

P2

P3

P4

P1

P2

P3

P4

Figure 2.2: Communication schema for MPI Gather



18 CHAPTER 2. USED TECHINQUES

A

D

C

B

A DCB

A DCB

A DCB

A DCB

P1

P2

P3

P4

P1

P2

P3

P4

Figure 2.3: Communication schema for MPI AllGather

1

3

0

3

7P1

P2

P3

P4

P1

P2

P3

P4

∑

Figure 2.4: Communication schema for MPI Reduce



2.4. UML COMPONENT DIAGRAM 19

2005. The models of software systems are expressed in diagrams of which UML
defines 13 types. In this thesis only component diagrams have been used which
describe the structure of the component-based system.

<<component>>

Order

OrderEntity

AccountPayable

Person

Figure 2.5: A generic component diagram. (taken from [Bel04])

Take a look at the simple component diagram figure 2.5. It shows only one
component with three interfaces. Note the elements: The big rectangle is the
components itself. A textual stereotype is added in <<brackets>> and shows
that this rectangle is a component. A visual stereotype could also be used but
usually only one type is given. Dependencies are shown by the lines connecting
the components. A circle is an interface and can be also named which is not
done here because there are not so many interfaces as that it would be unclear
which one is meant. If a line connects directly to a circle, then the interface is a
provides interface for the connected component. That means that the component
provides the functionality described by the interface. If a line connects to a circle
indirectly by using a half circle (The author uses the picture of grabbing hands
as mnemonic hook.), then the interface is a requires interface for the connected
component which means that the component requires the functionality described
by the interface. Without a matching provides interface the component cannot
work. It should be noted that some people prefer to draw arrows with a dashed
line instead where the arrow can be read as ”depends on”. It is also possible to
layer components that is to put a component diagram inside the one component
rectangle to show a components inner structure. In figure 4.1 you see a complete
UML 2 component diagram that is used for this thesis.

Component diagrams are usually used early in the development of a new soft-
ware product but they can also be used for reengineering an existing software
system to clarify or introduce a component structure. The terminology of compo-
nent diagrams already suggests on which features one should focus when making
a component model. The scope of the component, its interfaces and dependencies
need to be specified. Where necessary, the contracts should be further explained
in notes. Names should reflect the nature of the component (e.g. Data Access,
User Interface or Warehouse Logic) and interfaces (e.g. Persistent Data, Volatile
Data or Inventory).



20 CHAPTER 2. USED TECHINQUES

A component should implement a single, related set of functionality. If classes
or modules are tightly coupled, then this is an indicator that they would be better
in the same component to reduce the number of messages that have to be passed
over the network. It is also useful to focus on the size on individual messages.
Cyclic dependencies between components should not be tolerated because then
independence is not given. An internal change in a component, for instance the
change of a class or module, should not affect other components. It should only
be necessary to change other classes/modules within this component (Common
Closure). If all these guidelines are satisfied, then there is a good probability the
design will serve its purpose.



Chapter 3

Current Research

In this chapter, an overview of the current research in related fields is given. In
detail, it will be explained why modern GRIDs use Web Service related techniques
and what extensions are necessary for that. Then the previous efforts for compo-
nentizing of legacy application — like DOUG — are pointed out. After that, an
overview of the development of DOUG is given, what it does and what are current
challenges.

3.1 GRIDs

GRIDs1 are used for some time now to increase the utilization of computing and
storage hardware by sharing them in a virtual organization. They are also used to
tackle very big problems that could not be solved on computers available on local
networks. The actions around the creation of GRIDs aim to deliver practically
unlimited computational power and storage on demand very much like current
electrical grids supply us with electricity. With GRIDs CPU time and storage
could become a commodity that can be traded. For this purpose the users of a
GRID are grouped in virtual organizations that put providers and consumers into
a relationship. This is very similar to a neighborhood community that produces,
shares and consumes fruits or vegetables. Often providers and consumers are the
same persons.

In figure 3.1 you can see GRID users who are grouped into the virtual orga-
nizations VO1-VO3. One user is member in two different virtual organizations.

1In this thesis the term grid is used ambiguously: Most of the time the computer architecture
for distributed computing is meant, but sometimes also the topology used in mathematics. In
the Chair of Distributed Systems of the University of Tartu, where this work was produced, it
has been proven to be a good practice to name the former GRID while the latter is refered to as
grid. The different capitalization helps to clarify the meaning. GRID is not an abbriviation.

21



22 CHAPTER 3. CURRENT RESEARCH

There are also three GRID resources displayed (R1-R3) which are grouped into
two resource clusters RC1 and RC2. The virtual organization VO2 is allowed to
use RC2. VO3 can use RC1. The virtual organization VO1 is not allowed to use
any of the resources shown here.

   

VO1

VO2

VO3

R1

R3

R2

RC1

RC2

Figure 3.1: Virtual Organizations accessing different and overlapping sets of re-
sources. (repainted from [Wik05])

Typical GRIDs are built from resources (computational and storage hardware),
an interconnecting network and the GRID middleware that enables the submission
and execution of user jobs, accounting, authorization, authentication and resource
brokering (allocating a job to a resource).

Several proposed architectural models for GRIDs exist. These can be clas-
sified as traditional batch-oriented, service-oriented and peer-to-peer approaches.
While the peer-to-peer model is mainly used in storage GRIDs with very popular
file sharing software (e.g. BitTorrent [Coh03], Gnutella [Rip02] or eMule [KB05]),
computational GRIDs shift from traditional middlewares like Globus Toolkit 1 & 2
or BalticGrid, to service oriented architectures (SOA). This is mainly fueled by
two standards. The first is the Open Grid Services Infrastructure (OGSI) stan-
dard which has been incorporated into Globus Toolkit 3. The second is the state of
the art Web Service Resource Framework (WSRF) standard which is the driving
standards behind Globus Toolkit 4 [Fos05] or UNICORE [ES01].

Plain Web Services are not enough to form GRIDs. Applications often demand
special properties of a host. For example an algorithm could been specialized to
utilize command extensions of a special processor or it has been optimized for
limited memory usage at the cost of CPU time demand. For accounting reasons,



3.1. GRIDS 23

computation time is also often limited — a property which is not in scope of the
old Web Service standards. All this had to be taken into account in the work
towards OGSI. OGSI extends the specification of Web Services by the following
topics [CFF+04]:

• WSDL constructs and operations for representing, querying and updating
service data which includes meta and state data.

• The Grid Service Handle which is used to address a GRID service.

• A common base fault2.

• A set of operations for creating and destroying GRID services.

• Mechanisms for asynchronous notifications of changes, which is resembles an
Observer pattern [GHJV95].

After the specification of OGSI, the still young field of Web Service world
evolved. New Web Service related standards have been made and the continued
usage resulted in the emergence of best practices and patterns. There was also
a lot of criticism towards OGSI. The main points of criticism on OGSI are the
following [CFF+04]:

• OGSI is too large. There is not a clean factoring (separation) of topics in the
specification. For example, the mechanisms for notification are useful also
in other contexts.

• OGSI has problems with existing Web Service tools. It extends WSDL 1.1
using XML Schema extensively. For example, there have been problems with
JAX-RPC3.

• OGSI is too focused on object oriented design. Web Services are not a tech-
nique for distributed objects and they have different properties. The main
difference is that objects have a lifecycle that starts with the instantiation of
the object then a consumer issues operation on the object and later releases
the instance so the memory can be reused. A web service does not have
instances. Another important difference is that distributed object systems
have extensive support for handling references to other objects. [Vog03]

2A fault is the output of a Web Service operation in case an error occurs. In that case, the
fault replaces the normal output message of the operation.[CCMW01]

3JAX-RPC [Rob03] is a Java library that supplies functionality for mapping Java types to
XML and therefore hiding the details of XML from the Java developer. It is one of the pillars
of Web Service implementations in Java.



24 CHAPTER 3. CURRENT RESEARCH

• OGSI extended WSDL 1.1 although it should have waited for WSDL 2.0.
OGSI needs constructs which are introduced in WSDL 2.0, but because of
delays in the specification of WSDL 2.0 the authors of OGSI made their own
extensions to WSDL 1.1 instead. This lead to a less elegant solution and to
the already mentioned problems with tooling.

The specification of WSRF was the answer on this criticism. WSRF is actually
a family of specifications hence the ’F’ for framework. It comprises five single
specifications as showed below.

• WS-RessourceProperties (WSRF-RP): Describes how to combine stateful re-
sources and Web Services to a WS-Resource and how its properties can be
manipulated.

• WS-RessourceLifetime (WSRF-RL): Describes how to destroy a WS-Resource
at a given time.

• WS-RenewableReferences: Describes how a new reference to a WS-Adressing
endpoint can be obtained when the current reference becomes invalid.

• WS-ServiceGroup (WSRF-SG): Describes how to build and use a collection
of Web Services.

• WS-BaseFault (WSRF-BF): Describes a standardized base fault type.

The WSRF specification alone does not represent a complete substitute for
OGSI. WS-Notification (WS-N) is family of specifications [OAS07] that defines
how to implement the Observer pattern with Web Services. Also needed to replace
functionality of OGSI is the WS-Addressing specification [W3C06] which defines
how Web Services and messages can be addressed in a transport-neutral way. This
is necessary because Web Services do not need to be run by a web server but could
for example be made available by SMTP.

In figure 3.2, you see a grouped overview of the specifications needed for GRIDs.
Together these specifications make up a factored substitute for OGSI. Therefore,
the critique that OGSI is too large has been addressed. Since WSRF is described
in terms of WSDL, it does not add extensions and is therefore more compatible
to existing tools. The terminology in WSRF has been changed so that the needed
extensions separate more clearly the component oriented view on services from the
object oriented features added in the specification. This is done by the introduction
of the ResourceProperties which decorate a service and create a WS-Ressource.

The shift to a service oriented GRID — OGSI based or even better WSRF
based — enables GRID resources to expose their capabilities through standard-
ized interfaces which allows GRID users to integrate these services in their own
applications through open-standard interfaces.



3.2. COMPONENTIZING LEGACY APPLICATIONS 25

WS-ResourceProperties

WS-ResourceLifetime

WS-RenewableReference

WS-ServiceGroup

WS-BaseFault

WS-Addressing
WS-Notification

GRIDs

Figure 3.2: WS-* specifications used in modern GRID frameworks.

3.2 Componentizing legacy applications

While teaching can prepare users for the new programming paradigms, it is still
unclear how legacy applications can benefit most from service oriented grids. Often
an old application cannot be completely rewritten to fit into the SOA paradigm.
A good example is the HadCM3 AOGCM climate model used by the desktop grid
project climatepredition.net [SKM+02] which consists of millions of lines of Fortran
code that have been developed over 13 years. Due to the pressing issues of climate
change there is no time to rewrite and validate the model.

[GKT+05] suggests to build a wrapper around a legacy application to make it
available in a SOA. While this approach bears not much workload for the GRID
user, several drawbacks have been identified. The biggest problem is the lack of
interaction with the job, when it has been started. Any application which accepts
input data during execution can not be considered for their approach.

More promising in terms of increased adaptability through adding, removing or
replacing components is the componentization of the legacy application but there
is not much research done yet. In [PMB+06] the authors describe the dissection
of Jen3D, an Java application, which uses a middleware called ProActive that
supports parallel, distributed and concurrent programming through distributed
objects. The authors developed a software development process for componenti-
zation of legacy applications. They also showed that in their case the performance
has not suffered significantly.

Many legacy applications that run on traditional GRIDs are written in non ob-
ject oriented languages like Fortran or C. Often MPI is used. The object oriented



26 CHAPTER 3. CURRENT RESEARCH

paradigm is much closer to the service oriented paradigm than procedural lan-
guages like Fortran. Also forming components from applications using MPI seems
harder than from applications using ProActive because the latter is made to fit
well into the object oriented Java environment. Therefore, the author believes it
is necessary to research componentization of typical legacy grid applications.

3.3 DOUG

DOUG (Domain decomposition On Unstructured Grids) is a software package
which is developed at the University of Bath, England and the University of Tartu,
Estonia since 1997. It is a parallel solver for very large linear systems with up to
several millions of unknowns. It handles finite element discretization of elliptic
partial differential equations which is given as input in the form of element stiff-
ness matrices (elemental input) or as a single sparse matrix (assembled input).
DOUG can handle 2D or 3D problems. DOUG itself was first implemented in
FORTRAN 77 but has been completely rewritten in Fortran 95. To achieve fast
processing times, DOUG uses automatic parallelization and load-balancing. Paral-
lelization is implemented through MPI and it was taken care of that non-blocking
communication was used as much as possible (cf. chapter 2.3).

Basically, DOUG solves a linear system like

Ax = b (3.1)

where A is sparse and the dimension of A is very large. This is done with the
iterative Krylov subspace method. It converges guaranteed to the exact solution in
N iterations where N = dim(A). It does so by approximating

x = A−1b ≈ p(A)b (3.2)

where p is a ”good” polynomial. Many algorithms exist which employ the Krylov
subspace method. The problem is that due to possible rounding errors that origin
from the usage of floating point numbers in the implementation these algorithms
can be less robust as the theory suggests. Also, for large N the convergence rate is
by far too slow. For that reason, a preconditioner is used. A good preconditioner
transforms the original linear system into one which has the same solution but an
iterative solver needs much smaller number of iterations [Saa96]. DOUG imple-
ments the Preconditioned Conjugate Gradient (PCG), the Stabilized Bi-Conjugate
Gradient (BiCGstab), the minimal residual (MINRES) and the 2-layered Flexible
Preconditioned Generalized Minimum Residual method (FPGMRES) with left or
right preconditioning.

The general algorithm used for creating the sub-problems that are assigned
to each CPU is domain decomposition. The idea of domain decomposition is to



3.4. REFACTORING FORTRAN 27

decompose the problem in n sub-problems each of which will be solved on one
CPU. In a way, it is similar to a divide and conquer scheme but with domain
decomposition there is communication on the borders of the sub-problems involved.
Usually, communication is considered to be more costly as CPU time so that
the decomposition algorithm tries to minimize the borders. This technique is so
wide-spread in High Performance Computing that super-computers support it in
hardware by the network topology of the inter-CPU connections. In figure 3.3, a
decomposition of a problem with assembled input done by DOUG is shown. The
problem is here divided into four sub-problems. On the borders of the sub-domains
communication occurs.

An interesting property of domain decomposition is that it can be used as a
preconditioning step for Krylov subspace methods such as the conjugent gradient
method or the method of generalized minimum residual [SBG04]. DOUG employs
2-level preconditioning in which a coarse matrix is used which approximates the
global matrix on a suitable chosen coarser scale. This reduces the total work
of a preconditioned Krylov method (like PCG) to almost a constant number of
iterations independent of N .

Recently, the development and research has been focused around aggregation
based domain decomposition methods. Major progress has been made in deter-
mining an upper bound for the condition number of the preconditioner in case of
highly variable coefficients. This allows a better estimate of the error and thus
enables the solver to finish in less iterations. This approach has been implemented
in DOUG and it has been show experimentally that it is of superior speed to com-
parable methods.[SV06a, SV06b] One big problem in the development of DOUG
is to keep the source code manageable. There are two related problems in par-
ticular. The first is that two different version of DOUG exist one for elemental
input (doug main) and one for assembled input (doug aggr). This is a usability
problem, but also a problem for the programmers, because of duplicated code.

Due to research performed with the help of DOUG the code changes fast.
As with most software systems, features which have been added are usually not
removed and make easy understanding and maintenance more difficult if no coun-
termeasures are deployed. The most important countermeasure to retain main-
tainability over time is refactoring.

3.4 Refactoring Fortran

While changing legacy applications with the aim of using them in a service oriented
GRID, one must often use refactoring to improve the structure of the source code.
Fowler [Fow99a] defines refactoring as

a change made to the internal structure of software to make it easier



28 CHAPTER 3. CURRENT RESEARCH

91 92 93 94 95
06 07 08 09 10
21 22 23 24 25
36 37 38 39 40

76 77 78 79 80
96 97 98 99 00
11 12 13 14 15
26 27 28 29 30
41 42 43 44 45

81 82 83 84 85
01 02 03 04 05
16 17 18 19 20
31 32 33 34 35
46 47 48 49 50

86 87 88 89 90

26 27 28 29 30
41 42 43 44 45
56 57 58 59 60
71 72 73 74 75

11 12 13 14 15
21 22 23 24 25
36 37 38 39 40
51 52 53 54 55
66 67 68 69 70

06 07 08 09 10

66 67 68 69 70
81 82 83 84 85
96 97 98 99 00
11 12 13 14 15

51 52 53 54 55
71 72 73 74 75
86 87 88 89 90
01 02 03 04 05
16 17 18 19 20

56 57 58 59 60
76 77 78 79 80
91 92 93 94 95
06 07 08 09 10
21 22 23 24 25

61 62 63 64 65

16 17 18 19 20
31 32 33 34 35
46 47 48 49 50
61 62 63 64 65

01 02 03 04 05

Figure 3.3: Domain decomposition of 15× 15 matrix by DOUG.



3.4. REFACTORING FORTRAN 29

to understand and cheaper to modify without changing its observable
behavior.

Refactoring should be done when a feature, change or bug fix is estimated to
take longer without prior refactoring. It should also be used when the implicit
knowledge about the application in the programmer’s head should be made ex-
plicit, for example when he leaves the project. Although good documentation also
helps in this regard, good source code is self-documenting: It has a well defined de-
sign, uses just the right amount of comments, the scope of subroutines and function
is so that they do only one thing, their name is well chosen and the structure inside
the routines is easy to understand (e.g. a low cyclomatic complexity [Som07]).

Fowler also defined several hints to figure out when code needs refactoring.
These hints are not given in a clearly defined way but more like a empiric measure.
He coined these hints smells. For example the smell Long Method means that a
long method (or subroutine in Fortran) suggests shortening it, e.g. by extracting
smaller methods. Still, there can not be a definition when a method is long.
Kerievsky suggests in [Ker04] a maximum of 5-10 lines of code as a rule of thumb
but of course this also depends on the functionality.

In the field of object-oriented methods, refactoring has been very helpful to nu-
merous developers and many tools exist to support easy application of refactorings
to problematic code. Most of the refactorings are easily applicable to Fortran as
well sometimes with minor changes. De [De04] made a list of refactorings that are
usable in Fortran 90. Sadly, there are no production quality tools yet that can ap-
ply these refactorings to the code, so that careful manual refactoring is necessary.
In [OXJF05], Photran, an Eclipse based IDE, has been introduced that supports
automated refactorings. Unfortunately, it is still in an early stage and was not
useful for our purposes because the Fortran parser used is not able to parse most
of our source code correctly.

That does not mean that there is no support for refactoring in Fortran at all.
The amount of possible refactorings is just very limited. For example, there is a tool
that converts the older FORTRAN 77 to the more modern Fortran 90 [Met96].
There is also a checker for coding conventions in FORTRAN 77 that can also
automatically tidy the code [Bun]. Nevertheless these tools can not be considered
a suit of refactoring tools that would help in the everyday work of a Fortran
programmer. They are specialized and can therefore be only applied in a very few
number of uses.

There are also a small number of commercial tools (e.g. Foresys, Understand
and McCabe Integrated Quality) that promise to be useful in refactoring Fortran
applications but they have not been evaluated in this thesis.

While refactoring, the programmer has to make sure the observable behavior of
the software does not change. This can be time consuming. When the code must



30 CHAPTER 3. CURRENT RESEARCH

be tested manually after each small change, times for checking the results will take
too long: The time for testing gets longer and longer the more tests are added and
the developer loses the motivation for testing because the process is too boring.
Therefore self-checking tests are needed. Self-checking means that the output is
either success or failure. This is achieved by specifying the expected answer in
the test. Ideally, the tested scope is small so that in the case of an error the bug
can be located faster. For this reason, there are unit testing frameworks that help
in the creation of a test suite. If the programmer makes sure the altered code is
covered by the tests, he can also make a system test but the smaller the tested
units are the safer the test is. My college Oleg Batrashev wrote a test framework
that does convenient self-checking tests for DOUG [Bat].

For high performance computing applications of course also the execution speed
is important. Therefore, the software to be refactored should also be profiled. Mai-
Liis Karring, a current master thesis worker at our chair, works at the moment on
an mechanism to systematically measure performance of DOUG [Kar].

With functional and performance tests in place, the programmer can start
refactoring in very small iterations. He should apply one refactoring then compile
and test. If the tests take too long then a selection of the most important tests
(a suite) should be run to reduce the time of iteration cycles. At some point, for
example before a check-in into the version control system, all tests should be run,
too, to make sure nothing unexpected broke by applying the refactorings.

Also very helpful for the author’s understanding of the DOUG source code was
the Fortran Doxygen extension [VB] developed by my colleague Oleg Batrashev
and Anke Visser of the Central Institute for Applied Mathematics in the Research
Centrum Jülich. The comments are parsed with the help of special leading charac-
ters (!<, !> and !!) very much like javadoc comments. By now, many subroutines
and functions as well as their parameters have been properly documented and are
available as HTML pages.

3.5 Necessary Research

At the moment GRIDs shift from traditional batch processing systems to service
oriented architectures. Web Service techniques are used to establish the SOA.
Legacy applications need to be converted to make them run on modern GRIDs.
Typical GRID users as well as application programmers are often not familiar
with the characteristics of components which are needed for SOAs. Often the
applications are made in a way that they do not fulfill the requirements for com-
ponents. That is why refactoring can be applied to such applications to improve
the structure of the applications before adding new functionality.

By establishing a standard process to make legacy applications available on



3.5. NECESSARY RESEARCH 31

the GRID, the users and programmers are much more likely to make a successful
transition. That is why software engineering knowledge is needed to establish such
a process. DOUG is a good example for such a legacy application which is why it
will be used as a case study.



32 CHAPTER 3. CURRENT RESEARCH



Chapter 4

DougService

Goal of this project was to use DOUG as a component. This component is con-
nected to other components to form an Eigenvalue solver. To know the Eigenvalue
and/or -vector of a matrix can be useful in several applications: In computer sci-
ence, Eigenvectors can be used to efficiently compress similar images like faces. In
biometrical application, this can be used to identify humans. Quantum mechanics
uses Eigenvectors to determine the ionization potential of molecular orbits. This
is the energy needed to strip a molecule of one electron. Both elemental and as-
sembled input can be given to the Eigenvalue solver and the nearest Eigenvalue
to an also given value called shift is returned. The Eigenvalue solver is itself a
component, too, and can be used for example by an graphical user interface, as
done in this work, or another application.

4.1 Architecture

4.1.1 Component technology

The first architectural question that was asked was what technology could be
used to define and connect components that will make up the Eigenvalue solver.
Although the solver has not been run on the GRID, similar technology should
be used so that the migration to the GRID could be done easily in the future.
Because most modern GRID frameworks use Web Services, the choice was straight
forward. The Web Service framework that was used was chosen with respect to
further development. Since the premier service oriented GRID framework at the
moment is the Globus Toolkit 4 and it uses Axis [SC06], the same framework was
chosen. Another reason was that long term production use proved Axis’ stability
and flexibility.

Note that although Axis2 [Apae] is a newer, rewritten implementation and

33



34 CHAPTER 4. DOUGSERVICE

there is a post-beta release that is deemed fit for production use, first experiments
were discouraging. At least for version 1.0 it must be said that the documentation
is bad and outdated, sometimes plain wrong and there were several bugs in the
software. For that reason the older version — Axis 1.4 [Apac] — was used. This
is the last version before the rewrite and it was found to be suitable for the task.

4.1.2 Component scope

<<component>>

DougService

<<component>>

UserInterface

<<component>>

OtherApplications

<<component>>

IterativeEigenvalueSolver

Figure 4.1: Component diagram of the Eigenvalue solver

With the component technology chosen, the next question was what compo-
nents would be chosen and what interfaces should be exposed. As the reader can
see in figure 4.1, the Eigenvalue solver is composed out of two components and
can be used by other components. Each of the components is modeled as a Web
Service and exposes its operations for other components to use.

The first component is the DougService. It contains the whole logic for DOUG
and exposes its functionality through one single interface. The second component
is the IterativeEigenvalueSolver. It contains the algorithm for the solver and also
exposes its interface for other applications. It completely hides the DougSer-

vice. Therefore the DougService can be easily exchanged with another linear
equation solver as long as its interface is implemented. If necessary, an Adapter
pattern [GHJV95] can be used to covert the interface.



4.1. ARCHITECTURE 35

4.1.3 DougService — Wrapper for DOUG

DOUG is needed as a component but it is written in Fortran while Axis requires
C++ or Java. Therefore, a wrapper was built around DOUG which performs the
following steps:

• Recieve and write the input files to the harddrive,

• call the DOUG executable and wait until it finishes,

• parse the solution files and return the result.

At a later stage it should be considered to use JNI to access a — yet to be
created — library of DOUG. Since this work is protoypical, some flexibility in
the configuration of DOUG has been limited intentionally to achieve faster devel-
opment times. Nevertheless, it was taken care of that adding more flexibility in
configuration can be done without much work.

The problem description at the beginning of this chapter gave rise to the in-
terface specification in listing 4.1. The operation runAssembled solves the math-
ematical equation Ax = b where A is the matrix in assembled form, b is the right
hand side vector and x is the returned vector. The last parameter is the control
file which is passed by the client to set the configuration of DOUG. There are two
overloaded flavors of runAssembled: The first one uses JavaBeans and formatted
text as input and the second version uses WS-Attachments and XDR binary files.1

The differences will be explained in chapter 4.1.5. The operation runElemental

also solves a linear system but it is given in elemental form. The last operation,
elementalToAssembled, copies all elemental form files and uses DOUG to convert
them to assembled form.

For the sake of completeness, it should be said that while familiarizing with
Axis a different approach was chosen. A Web Service without the use of WS-
Attachments was considered where all the data was supposed to be on the server
already, maybe put there via WebDAV or SCP. Then the Web Service’s duty was
just to start the right executable. The data returned from the call is an array of
two Strings: the standard out (stdout) and standard error stream (stderr). The
— hopefully successful — result was in the stdout.

Of course there are several problems with this approach:

• The user needs access to some portions of the file system and can put any
files there.

1WS-Attachments or SOAP Attachments is a standardized extension of Web Services that
adds a file to the SOAP message just like an attachment is added to an eMail. Actually, in
Axis even the implementation of the JavaMail API is reused for that purpose. Attachments are
represented by DataHandler objects in Axis.



36 CHAPTER 4. DOUGSERVICE

import javax.activation.DataHandler;

public interface I_DougService {

public DoubleVector runAssembled(AssembledMatrix matrix ,
DoubleVector rhs , DataHandler control_file );

public DataHandler runAssembled(DataHandler matrix ,
DataHandler rhs , DataHandler controlfile );

public DoubleVector runElemental(
DataHandler freedom_lists_file ,
DataHandler elemmat_rhs_file ,
DataHandler coords_file ,
DataHandler freemap_file ,
DataHandler freedom_mask_file ,
DataHandler info_file ,
DataHandler control_file );

public AssembledMatrix elementalToAssembled(
DataHandler freedom_lists_file ,
DataHandler elemmat_rhs_file ,
DataHandler coords_file ,
DataHandler freemap_file ,
DataHandler freedom_mask_file ,
DataHandler info_file ,
DataHandler control_file );

}

Listing 4.1: Interface I DougService



4.1. ARCHITECTURE 37

• Security policies are implemented e.g. via Tomcat’s user management (for
using WebDAV from Tomcat) or system users (SCP). This is not suitable
for GRIDs mechanisms of authentication and authorization with virtual or-
ganizations.

• Between putting the files in the right place and starting the calculation can
pass time in which another user can overwrite the files. So the user gets
results from someone else which might lead to wrong decisions if they are
based on that data.

• stdout must not necessarily contain the result. If the constant D MSGLVL

in the file globals.F90 is set to 0 or if the problem has more than 100
unknowns, then the result is not written to stdout.

For documentation purposes, the operation is still available but is marked dep-
recated. After getting more experience with Axis, the final implementation was
made.

public interface I_IterativeEigenvalueSolver {

public EigenSpace inverseIteration(AssembledMatrix a,
DoubleVector initialGuess , double shift , double error)
throws IOException , DougServiceException;

}

Listing 4.2: Interface I IterativeEigenvalueSolver

4.1.4 IterativeEigenvalueSolver – Calculating Eigenvalues

Because the Eigenvalue solver was to be exposed itself as a service, an interface has
been supplied to emphasize the component architecture. The sole algorithm that
is availible so far is the Inverse Iteration described by [Gu00] but other numerical
Eigenvalue solving algorithms could implemented later using the same design as in
the current implementation. The Inverse Iteration calculates an Eigenvector with
corresponding Eigenvalue thus inverseIteration returns a usually non-complete
Eigenspace. It has four inputs: The first input is the matrix which Eigenvalue is
to be calculated. The second is the initial guess of the Eigenvector. The third is
the shift which is a scalar close to the returned Eigenvalue and the last is the error
boundary which determines the precision of the solution and also influences the
number of iterations needed.



38 CHAPTER 4. DOUGSERVICE

Marker 
(4 or 8 byte) Data Marker 

(4 or 8 byte)

Figure 4.2: Unformatted data is written enclosed by markers.

4.1.5 Interoperability with text and binary data files

While the interface specification is very clear, there were some changes in DOUG
that had to be implemented. Those changes were all about the flexibility how
DOUG handles input and output files. In DOUG ”unformatted” Fortran binary
files are used in contrast to text files which can be formatted by a special string.
Because of limitations in unformatted files, that are based in the language specifi-
cation of Fortran, the binary format could not be used without jeopardizing inter-
operability. Binary files produced by Fortran programs are not only architecture-
dependant (in particular endianess is a problem: little endian vs. big endian)
but also compiler dependent: Each binary file is a series of enclosing markers and
data bytes (see diagram 4.2). In the marker, the number of enclosed data bytes
are stored. GFortran chooses eight bytes for the header while the ifort compiler
chooses only four bytes. This is not suitable for a diverse environment like the
GRID because one cannot rely that the same compiler is used everywhere. For
that reason ASCII based text formats have been used which inflates the size by
a two digit factor. It also slows down the processing speed due to parsing and
increases the memory footprint drastically. For very large problems, this is not
feasible. Even for medium size test examples this is not a good solution. There-
fore effort has been put into a new binary data format that suffers not from the
drawbacks described above.

The FXDR library [Pie] was very helpful in the creation of this new format.
FXDR is a Fortran wrapper around the XDR (eXternal Data Representation)
library which is shipped with virtually any Unix system. In practical terms, FXDR
allows programmers to read and write unformatted data that can be used on every
computer where FXDR is installed. Therefore a huge gain in interoperability is
achieved while a binary format is still possible. The XDR library was designed
specifically for RPC so it is a good fit with Web Services. The bit representation
of the data written with FXDR is standardized by the IEEE which is also an
improvement over traditional Fortran unformatted I/O. Files in XDR format are
even marginally smaller than traditional unformatted files because no makers are
saved to the file.

FXDR support has been built into the assembled version of DOUG. The right
hand side vector and the solution vector can be configured to be read or written
either in formatted text, unformatted traditional Fortran binary or unformatted



4.2. IMPLEMENTATION ISSUES 39

XDR binary. The matrix can be used as formatted text or XDR binary. A
converter — txt2xdr — has been written that converts formatted text matrices
and vectors to XDR format. A service operation has been added that uses the
XDR format files as SOAP attachments.

4.2 Implementation issues

4.2.1 Control file vs. set of default CLI parameters

As already mentioned in chapter 4.1.3, a run of DOUG is configured with a set
of parameters that are given in the control file. A typical control file is shown in
listing 4.3. One can argue if the control file should be passed by the client or if it
should be generated by the service. As the client can set important configuration
options for the operation of DOUG, this information has to be passed to the service
and finally end up in the control file. Therefore some configuration data has to
be passed. But in the control file there are also some parameter, which will not
change over time.

Because of the prototypical nature of this implementation, an easy to imple-
ment solution has been chosen: The control file is sent by DougWSClient. A set
of constants is shared by both DougWSClient and DougService to make sure the
control file matches the location where the files are stored on the hard drive prior
to execution.

The principle of separation of concerns refers to the requirement that distinct
features overlap in functionality as little as possible. This eases maintainability of
an software program because solutions of a sub-problem can be combined to form
a solution to a bigger problem. An example where the separation of concerns is
violated are the file names of the data files which are set by DougService anyway
even if they are set in the control file. Separation of concerns dictates that they
should not been written in the control file by DougWSClient.

The author believes that DOUG will benefit if it will not use a control file
anymore but use default values for the controlled options that can be overridden
by the usage of command line interface arguments. The rationale for this is that
the user does not bother to understand and set all the options himself. This would
not only lead to better usability of DOUG but also simplify the options manage-
ment of connected components. Only the non-default parameters would have to
be transferred to DougService and the wrapper would not have to manipulate
anything in the control file, just add a command line parameter.



40 CHAPTER 4. DOUGSERVICE

solver 2
method 1
input_type 1
matrix_type 1
info_file doug_info.dat
freedom_lists_file doug_element.dat
elemmat_rhs_file doug_system.dat
coords_file doug_coord.dat
freemap_file doug_freemap.dat
freedom_mask_file ./NOT.DEFINED.freedom_mask_file
number_of_blocks 1
initial_guess 2
start_vec_file ./NOT.DEFINED.start_vec_file
start_vec_type 2
solve_tolerance 1.0e-12
solution_format 0
solution_file ./ solution.file
debug 0
verbose 10
plotting 0
assembled_rhs_file ./NOT.DEFINED.solution.file
assembled_rhs_format 0
dump_matrix_only true
dump_matrix_file ./ dump_matrix.file

Listing 4.3: An example DOUG control file for a conversion from elemental input
to assembled input



4.2. IMPLEMENTATION ISSUES 41

4.2.2 Two executables

Another problem is the split-up of DOUG in two different variations as described
in chapter 3.3. The natural way of determining the input format (assembled
or elemental) automatically is not easily possible without major redesign of the
application. It could be implemented into the wrapper which is part of the Web
Service but automatic input format recognition is clearly the responsibility of
core DOUG because it is also used as a stand alone application. This added
unnecessary complexity to the wrapper which could have been avoided by having
only one single executable. While automatic recognition of the input data is mainly
a usability problem — the user should not be bothered with tasks that can be done
automatically, as Raskin states in [Ras00] — it also led to distinct Web Service
code for the different varieties of DOUG. Additionally, other applications that use
DOUG will be more complex.

4.2.3 Smelly: Code Duplication

Very close related is the problem that separate executables are compiled from
different source files that share code. Parts of the changes in the Fortran code had
to be done twice which is very prone to bugs and leads to even worse code quality
the more will be changed. Fowler calls possible reasons to refactor smell and Code
Duplication is the most common smell [Fow99b].

A good example is a code snippet from the source files main.F90 and aggr.F90

given in listings 4.4 and 4.5. The code snippets are exactly the same except of
some additional whitespace in the latter and a different parameter to operation
calls. A comment describes what the code does which is in itself a bad smell. Of
course, comments are generally a good thing but if a block of code is commented
then it is often so that a procedure with a similar name of the comment improves
readability and maintainability.

Both smells, Code Duplication and Comment, suggest to use the refactoring
Extract Method (which [De04] modified to Extract Procedure in Fortran). There-
fore the next step is to make the subroutine. Because main.F90 contains no mod-
ule, the author chose to do a second refactoring — Move Method — in this step,
too. The new subroutine has been placed in main drivers.F90 where already the
subroutines parallelAssembleFromElemInput and parallelDistributeAssem-

bledInput are located. Because the new subroutine chooses between the two
algorithms based on a flag, it is a good fit. The name of the new subroutine Se-

lectInputType has been chosen by using the comment that refered to the block
of code. The final code is depicted in listing 4.6. After adding comments to the
method and adding the method to the list of public procedures, the code is com-
piled and tested. Then the code snippets in listings 4.4 and 4.5 is replaced by the



42 CHAPTER 4. DOUGSERVICE

! Select input type

select case (sctls%input_type)
case (DCTL_INPUT_TYPE_ELEMENTAL)

! ELEMENTAL

call parallelAssembleFromElemInput(M,A,b,nparts ,&
part_opts ,A_interf)

case (DCTL_INPUT_TYPE_ASSEMBLED)
! ASSEMBLED

call parallelDistributeAssembledInput(M,A,b,A_interf)
case default

call DOUG_abort (’[DOUG main] : Unrecognised input type.’,&
-1)

end select

Listing 4.4: Code snippet from main.F90

! Select input type

select case (sctls%input_type)
case (DCTL_INPUT_TYPE_ELEMENTAL)

! ELEMENTAL

call parallelAssembleFromElemInput(M, A, b, nparts , &
part_opts , A_ghost)

case (DCTL_INPUT_TYPE_ASSEMBLED)
! ASSEMBLED

call parallelDistributeAssembledInput(M, A, b, A_ghost)
case default

call DOUG_abort (’[DOUG main] : Unrecognised input type.’,&
-1)

end select

Listing 4.5: Code snippet from aggr.F90



4.2. IMPLEMENTATION ISSUES 43

new subroutine call (listing 4.7) one after another. After each replacement the
code is compiled and tested to make sure no new errors have been introduced.

!----------------------------------------------------------------

!> Distributes data , chooses algorithm based on input type

!----------------------------------------------------------------

subroutine SelectInputType(input_type , M, A, b, nparts , &
part_opts , A_interf)

implicit none

integer , intent(in) :: input_type !< Input Type

type(Mesh), intent(in out) :: M !< Mesh

type(SpMtx), intent(out) :: A !< System matrix

float(kind=rk), dimension (:), pointer :: b !< local RHS

! Partitioning

integer , intent(in) :: nparts !< number of parts

!! to partition a mesh

integer , dimension (6), intent(in) :: part_opts !< partition

!! options (see METIS manual)

type(SpMtx),intent(in out),optional :: A_interf !< matrix at

!! interface

select case (input_type)
case (DCTL_INPUT_TYPE_ELEMENTAL)

! ELEMENTAL

call parallelAssembleFromElemInput(M,A,b,nparts , &
part_opts ,A_interf)

case (DCTL_INPUT_TYPE_ASSEMBLED)
! ASSEMBLED

call parallelDistributeAssembledInput(M,A,b,A_interf)
case default

call DOUG_abort (’[DOUG main] : Unrecognised input type.’, -1)
end select

end subroutine SelectInputType

Listing 4.6: New extracted subroutine in main drivers.F90

Now it becomes clear that the name for the subroutine as well as the previous
comment is not very self descriptive for its functionality. Therefore, the refactoring
Rename Method is used to clarify this. Both the subroutine definition in main -

drivers.F90 as well as the calls in main.F90 and aggr.F90 are changed. After
the changes, the code is compiled and tested again.

By looking in the list of public procedures of the module in main drivers.F90

one wonders, if now that parallelAssembleFromElemInput and parallelDis-

tributeAssembledInput are not accessed from main.F90 and aggr.F90 anymore



44 CHAPTER 4. DOUGSERVICE

call SelectInputType(sctls%input_type ,M,A,b, &
nparts ,part_opts ,A_interf)

Listing 4.7: Code blocks in main.F90 and aggr.F90 have been replaced by sub-
routine call

the visibility of these routines can be reduced. The compiler complains if the
subroutines are private but used externally so this mechanism can be used as a
reporting tool. To be sure and find code that is obsolete and not called a full text
search is done additionally in all source files. This is tried first with parallelDis-

tributeAssembledInput and it surfaces this subroutine does not have to be public
anymore. Afterwards, the same is done with parallelAssembleFromElemInput.
While the code still compiles, the full text search returns unexpected results: A
program test SpMtx symmetry at pmvm in a file with the same name exists in
which parallelAssembleFromElemInput is called. This means that this file is
not compiled. Because the program is not included in the build process, changes
to the file cannot be tested yet. Therefore, it is decided that only parallelD-

istributeAssembledInput is removed from the list of public procedures. The
source is compiled and tested one more time then the changes are committed to
the version control system.

The refactoring of similar parts of the code will be crucial for ensuring quality
and development productivity in the future. Therefore the author urges strongly
to invest more effort into refactoring. Because of the short iteration cycles of
coding, compiling and testing it is important that compiling and testing are fast
enough. At the moment a typical compilation run takes about 40 seconds and a
test run of a suit of reasonable size takes around 15 seconds.2 If these times could
be reduced, so could the time for refactoring.

4.2.4 Refactoring with Fake Polymorphism

An other particular problem in the maintainability of the DOUG source is the big
number of conditional statements like select case and if then else. Nested
conditionals make the code much harder to understand and maintain. Long proce-
dures are more likely and the code is less self-expainatory. This became apparent
in the adding of additional file formats. Note that in object oriented languages
one would use polymorphism to solve the problem: An interface or an abstract
class would have been created and implementations or inherited concrete sub-
classes would execute the different works. This is referred to as Strategy pat-

2Measurements have been taken on an AMD Athlon 64 3000+ at 1.8 GHz with 1 GB RAM.



4.2. IMPLEMENTATION ISSUES 45

Context

RHS_XDRReader
read(File f)

strategy
                    

RHS_TextReader
read(File f)

RHS_BinaryReader
read(File f)

RHS_Reader
read(File f)

Figure 4.3: In OO a Strategy pattern would be used to reduce conditionals.

tern [GHJV95]. In figure 4.3 is an example UML class diagram with the entities
used in DOUG’s right hand side vector reader.

In a non object oriented language like Fortran this pattern is not applicable.
Therefore an approach has been chosen that can be applied in the described cir-
cumstances. No research has been done if this approach is also used in other
projects, so it cannot be said that it qualifies as a pattern. Nevertheless, it is
abstract enough to be applied as if it was a pattern. Because it is a substitute
for polymorphism, it is called Fake Polymorpism. Its idea is that the conditional
statement is extracted into a procedure where only the conditional is situated.
The code blocks within the conditionals get extracted again into one procedure
each with the same name, but with an additional case marker at the end. In the
end there are number of conditions + 1 procedures more than before.

In listing 4.8 an shortened example is given. An additional data format must
be added to the code. There are already two formats present and the difficult
nesting is distracting the reader. First the call to FindFreeIOUnit as well as
its error checking was moved into the blocks for text respectively binary version
because the new format does not need to find a free IOUnit. Then each block of the
conditional is moved to another subroutine with the same signature except the fmt
parameter. Instead, the name of the procedure is extended with the specific format
it handles. This means that Vect ReadFromFile becomes Vect ReadFromFile -

Text and Vect ReadFromFile Binary. Then the last format can be added easily.
Finally a few variables have been renamed for clarity. The final (shortend) code
can be seen in listing 4.9.

The benefit is of Fake Polymorphism is that

• the procedures become shorter,

• the code less is nested,



46 CHAPTER 4. DOUGSERVICE

!-----------------------------

!> Read vector of floats from file

!-----------------------------

subroutine Vect_ReadFromFile(x, fnVect , fmt)
implicit none

float(kind=rk), dimension (:), pointer :: x
character *(*), intent(in) :: fnVect
integer , intent(in) :: fmt

logical :: found
integer :: iounit

call FindFreeIOUnit(found , iounit)
if (found) then

if (fmt == D_RHS_TEXT) then
! some

! lines

! of code

elseif (fmt == D_RHS_BINARY) then
! some

! lines

! of code

else
call DOUG_abort (’[ Vect_ReadFromFile] : Wrong format ’, -1)

endif
else

call DOUG_abort (’[ Vect_ReadFromFile] : No free IO-Unit ’, -1)
endif
return

end subroutine Vect_ReadFromFile

Listing 4.8: An example where Fake Polymorphism should be used.



4.2. IMPLEMENTATION ISSUES 47

!-----------------------------

!> Read vector of floats from file

!-----------------------------

subroutine Vect_ReadFromFile(x, filename , format)
implicit none

float(kind=rk), dimension (:), pointer :: x
character *(*), intent(in) :: filename
integer , intent(in), optional :: format

if (fmt == D_RHS_TEXT) then
call Vect_ReadFromFile_Text(filename , x)

elseif (fmt == D_RHS_BINARY) then
call Vect_ReadFromFile_Binary(filename , x)

elseif (fmt == D_RHS_XDR) then
call Vect_ReadFromFile_XDR(filename , x)

else
call DOUG_abort (’[ Vect_ReadFromFile] Data format wrong.’, -1)

endif
end subroutine Vect_ReadFromFile

subroutine Vect_ReadFromFile_Text(filename , x)
implicit none

float(kind=rk), dimension (:), pointer :: x
character *(*), intent(in) :: filename
logical :: found
integer :: iounit , n, i

call FindFreeIOUnit(found , iounit)
if (.NOT.found) &

call DOUG_abort (’[ Vect_ReadFromFile_Text] : No free IO ’, -1)
! open

! sanity check

! read

! error handling

end subroutine Vect_ReadFromFile_Text

subroutine Vect_ReadFromFile_Binary(filename , x)
! some code

end subroutine Vect_ReadFromFile_Binary

subroutine Vect_ReadFromFile_XDR(filename , x)
! some code

end subroutine Vect_ReadFromFile_XDR

Listing 4.9: The same code after application of Fake Polymorphism.



48 CHAPTER 4. DOUGSERVICE

• reusability is encouraged because of a higher number of procedures,

• understandability is increased because of clear names of the procedures and

• future adding and removing of conditions can be done without harming the
structure of the code.

Unfortunately, the additional indirections in the code make it harder for a hu-
man to follow the flow of the program although clear names and minimal sets of
parameters will often reduce the need to look at the code itself.

4.2.5 Streaming vs. Attachments

From the very beginning it was clear that data has to be copied from one machine
to another. In the current solution the data is in objects wherever it makes sense
but there is also data which is a file by its very nature. For example it makes no
sense to represent binary data files by a special class. The same applies for the
control file within the limits described in chapter 4.2.1.

Of course there are several ways to copy a file on a network. The most promis-
ing for this application are HTTP streaming and WS-Attachment. While HTTP
streaming is very easy to implement, e.g. by using Jakarta Commons HTTP
Client [Apaf], it has also some drawbacks. The sequence of data exchange with
HTTP streaming would be like this:

• The client copies the files to a location in the file system where they are
availible via HTTP.

• The client invokes the service on the server and passes the URL as parameter.

• The server starts the download of the file from the client via HTTP.

Notice, that two transfers are necessary. This will most likely slow down the
total transfer. Because the client needs to supply a HTTP server, memory usage
will increase. This solution will be less stable since there are more security issues
involved (e.g. to restrict access to the transfered file) and atomic requests are safer
with heavy load of the service (”all or nothing”). With WS-Attachments there is
a better solution since the file is encoded with MIME or DIME and attached to
the SOAP message so that only one message s sent. Therefore, WS-Attachments
is often also called SOAP with Attachments or MIME for Web Services. There
is just one single remote procedure call that contains all the data. It also has
an additional memory footprint because of a few more classes which have to be
loaded but compared with the costly XML parsing it is still very reasonable. No
additional security issues are introduced since the SOAP message contains all the



4.2. IMPLEMENTATION ISSUES 49

needed data. Standard Web Service security mechanisms can be used. There is
also no need for the programmer to handle incomplete data transfers where the
remote procedure call (RPC) succeeds but the HTTP streaming fails. A RPC with
WS-Attachments is either a success or a failure.

Another problem of HTTP streaming is limited flexibility in reaction to system
environment changes. One of the advantages of Web Services is that the wire
transport protocol can be changed independently from message content. In case,
the provider of the service decides that it cannot offer HTTP anymore but limits
external communication to SMTP. Web Service frameworks can offer different
transport protocols as communication means and still be standard compliant. If
HTTP streaming would have been implemented into the application this flexibility
is severely limited. This is especially problematic in GRID environments, which
at the moment suffer from the necessity to have too many open TCP and UDP
ports. This is considered to make security on the GRID resources more difficult.

4.2.6 Debugging the RPC

It is fairly easy to log the SOAP messages that are transfered between the two
peers. For this purpose, a proxy called TCPMonitor has been used that is situated
between the Web Service and the client. It is shipped with Apache Axis and
can be started with java org.apache.axis.utils.tcpmon [listenPort tar-

getHost targetPort]. You can see a screenshot of the tool in figure 4.4. When
the client is started, it has to change the port number in the endpoint address. By
configuring the used port in the endpoint address, the programmer can easily use
TCP monitoring or bypass it.

A usability problem occurred if the attachments are too big: then TCPMonitor
can not handle the message anymore, throws an exception and does not pass
the message to the Web Service. This was problematic since the exception was
printed on the shell from which TCPMonitor was started. Therefore it was not
directly visible and it took some time to figure out, why the service did not work
anymore. The programmers of TCPMonitor should consider to open a message
box explaining what went wrong or enable messages of unlimited length possible.

A similar tool is NetTool [O’T]. Although it lacks XML pretty printing, it
can handle messages of virtually any size. It also measures time between call and
response and the sizes of the messages. TCPMonitor was preferred because of the
better readability of the messages but in the case of big messages NetTool is the
tool of choice.

A different problem occurred because of typographical errors in the creation
of the SOAP message and in the Web Service deployment descriptor. The first of
those errors occurred after copy and pasting some source code, which registers how
objects are mapped to the XML SOAP message. One typical (correct) piece of



50 CHAPTER 4. DOUGSERVICE

Figure 4.4: The TCPMonitor in use while debugging SOAP messages.

// Add (de -) serializer for AssebledMatrix.

QName qnameAssembledMatrix =
new QName(Settings.NAMESPACE_ID , "AssembledMatrix");

call.registerTypeMapping(AssembledMatrix.class ,
qnameAssembledMatrix ,
new BeanSerializerFactory(AssembledMatrix.class ,

qnameAssembledMatrix),
new BeanDeserializerFactory(AssembledMatrix.class ,

qnameAssembledMatrix ));

Listing 4.10: Type mapping registration



4.2. IMPLEMENTATION ISSUES 51

code where a type mapping is registered is given in listing 4.10. If the programmer
forgets to change some of the identifiers, then the code still compiles and runs but
produces errors when serializing or deserializing the passed objects. Axis could be
less error prone if it would assume a default qualified name (QName). Still, there
has to be a mechanism to set the QName by hand in case of name clashes. Also for
Call#registerTypeMapping, there should be an easier solution while the shown,
very flexible solution can be retained. There are only four different cases for type
mappings in Axis:

• primitive type mappings (int, double, String, etc.)

• array type mappings

• JavaBeans [Gra97] type mappings

• custom type mappings

Primitive types are mapped automatically by Axis. There is no need to register
a primitive type. The mappings are specified in JAX-RPC [Rob03]. Arrays have
to be registered only in the deploy descriptor3. Other objects have to be registered
both in the deploy descriptor and the client source code. The necessary source code
for registering a bean is shown in listing 4.10. To make the register process less error
prone, there could be an additional method in org.apache.axis.client.Call

with the name registerBeanMapping. See listing 4.11 for usage and listing 4.12
for a possible implementation. Custom type mappings have to be done like in
listing 4.10 except that other serializer and deserializer objects than instances of
the factory must be given.

// Add (de -) serializer for AssebledMatrix.

call.registerBeanMapping(AssembledMatrix.class );

Listing 4.11: Possible usage of JavaBean type mapping registration

4.2.7 Build process

The build process is typical compared to most Java projects. An ant [Apaa]
build file has been supplied with the usual targets (init, clean, compile and de-
ploy). For the sake of clarity the target deploy has been split up to two targets

3A deploy descriptor is a small XML file that configures the Axis runtime environment. It
specifies which methods to expose and which special type mapping should be done.



52 CHAPTER 4. DOUGSERVICE

public void registerBeanMapping(Class c) {
call.registerTypeMapping(c,

new BeanSerializerFactory(c),
new BeanDeserializerFactory(c));

Listing 4.12: Possible implementation of registerBeanMapping

named deployServer and deployClient. Two addional targets have been given
toregister/unregister a service including its non-standard type mappings to the
Axis server configuration using the deploy/undeploy descriptors.

Although it is not related with software engineeing in GRID computing in
particular, one problem and its solution should be noted. When using ant as a
build tool, it is always difficult to decide what to do with required libraries. The
project described in this thesis needs eleven jar files in the classpath. They are
distributed with different licenses. While one would think that they can be stored
in the version control system along the source code, there are a few issues. First,
version information of used libraries is lost unless it is coded into the filename of the
library (which introduces other problems). Second, there could be a large number
of projects in the repository which all have the same libraries stored. This uses
more storage than necessary and makes upgrades of libraries much more difficult.
Therefore it seems promising to download missing libraries automatically from a
website. A few of the used libraries cannot be downloaded easily by an ant task
because there are licenses which have to be read and accepted manually. Therefore
a local repository for libraries should be used for automatic downloading. This
could be a webserver (with password protection to satisfy the paragraphs about
redistribution in the licenses). Maven [Apab], a project management framework,
which can be considered a super-set of ant, can help solving these issues and also
much more but was considered to be too complex for the setting in the Chair of
Distributed Systems. The usage of Maven pays off in bigger organizations where
repeatable processes need to be standardized.

Regardless of the problems, the libraries have been added to the version control
system to have a less elegant but very simple solution.

4.2.8 Limitations of the prototype

For this implementation a prototypical approach has been chosen so that this work
can focus on the important software engineering issues. See [Som07] for advantages
and characteristics of prototyping in software development projects.

The main characteristics of prototyping are that some topics will not be handled
by the final software and an agile process to enable exploration into a limited



4.3. PERFORMANCE 53

number of unknown topics. In this work the following topics have been considered
not so relevant:

• Useage of custom serializers instead of bean serializers.

• Concurrency

• Keeping data not longer than really necessary in memory.

To improve performance or structure these topics could be tackled. In other
words, the software is not designed as a throw-away prototype but rather an evolv-
ing one in the spirit of agile development processes [Som07].

As the reader can see in the code excerpts (listing 4.10), JavaBeans are serial-
ized before constructing the SOAP message. This is very easy to implement which
is why it has been chosen in this implementation. For better structure the data
classes (ee.ut.math.doug.AssembledMatrix, DoubleVector and Eigenspace)
should not be beans. Methods that have been added just for the purpose to
satisfy the contract for JavaBeans have been marked by a comment so it should
be easy to revert them to a better, non-JavaBean class. In this case the BeanSe-

rializerFactory is no longer able to serialize the objects. Therefore a custom
Serializer has to be implemented. See [Apad] for information how to do it.

4.3 Performance

4.3.1 Size of SOAP message

Different approaches for constructing the SOAP message have been examined.
So far, the performance of these approaches has not been considered. Because
there is no existing solution to compare the Web Service with, they can only com-
pared to each other. Here the sizes of the SOAP messages are compared since
they determine the speed of the system as a whole. This thesis focuses on com-
paring the XDR/attachment (having DataHandler parameters) vs. bean version
of runAssembled (having AssembledMatrix and DoubleVector as parameter) be-
cause XDR input/output formats are so far available only for the assembled version
of DOUG.

The two approaches represent extremes: While the XDR approach is a fast,
if not the fastest possible way to do a Web Service call, the SOAP message lacks
clarity, expressiveness and flexibility that can help the user to debug the call. The
message of the beans version has a maximum of clarity and flexibility but the
textual representation of the data as well as additional XML elements produced
by Axis increase the size very much.



54 CHAPTER 4. DOUGSERVICE

To make an educated decision how to balance clarity and size of the SOAP mes-
sages one needs to have numbers to compare the different approaches. Therefore
several examples have been run and the size of the messages have been recorded.
This was done as suggested by [YHW05]: The proxy NetTool was used to set up a
TCP tunnel and the Web Service call was redirected to a different port. NetTool
automatically keeps track of the size of the messages that pass through the tunnel,
therefore this is a convenient choice.

File Unknowns Sent (bytes) Recieved (bytes) Total (bytes)

Lap4x4 9 2,764 1,203 3,967
Lap8x8 49 6,028 1,527 7,555

Lap16x16 225 21,005 2,931 23,936
Lap32x32 961 84,749 8,827 93,576

Table 4.1: Sizes of different SOAP messages using XDR version.

File Unknowns Sent (bytes) Recieved (bytes) Total (bytes)

Lap4x4 9 26,804 1,395 28,199
Lap8x8 49 155,633 3,555 159,188

Lap16x16 225 753,445 13,033 766,478
Lap32x32 961 3,313,813 52,685 3,366,498

Table 4.2: Sizes of different SOAP messages using beans version.

File Unknowns Sent (%) Recieved (%) Total (%)

Lap4x4 9 10.3 86.2 14.1
Lap8x8 49 3.9 43.0 4.7

Lap16x16 225 2.8 22.5 3.1
Lap32x32 961 2.6 16.8 2.8

Table 4.3: Comparing sizes of different SOAP messages. (XDR/beans)

The examples use matrix data that was created for testing purposes and belongs
to the standard DOUG example set. The right hand side was created by a small
program the writes out 64 bit double precision floats between 0 and 1. In tables
4.1 and 4.2 the name of the data set, the number of unknown in the problem, the
sizes of the input files and both the sent as well as the received message sizes are



4.3. PERFORMANCE 55

shown both for the XDR and the bean solution. In table 4.3 the relative message
sizes of the XDR version compared to the bean version are given.

It is obvious that there is some protocol overhead — the header of the SOAP
message — which has an impact on the measurements on the smaller examples.
The larger the input problems get, the larger the message body gets and the
smaller its impact is. Looking at the table with the comparisons it becomes clear,
how big the performance gain by the usage of XDR really is. The message sizes
using problems of reasonable size are around 35 to 40 times smaller as with beans.
In the opinion of the author, the loss of clarity when using XDR is acceptable
considering the vastly reduced size of the SOAP messages.

For the sake of completeness it should be remarked that there are different other
approaches how to balance the properties of the SOAP message. With message
style Web Services the programmer has direct access to the XML rather than using
an abstracted access through an API. Automatic mapping of objects to XML is
then turn off and the user’s responsibility. As an example look at the SOAP mes-
sage in table 2.1 with contains a DoubleVector. With message style Web Services
the line <vector xsi:type="xsd:double"> -1.3248258958028</vector> could
be replaced by <v="-1.3248258958028"/> which is considerable smaller. While
this is a valid XML element, the problem with this approach is that because no
standard for the format of the message is used the client needs special knowledge
how to extract the vector from the message. This knowledge would have to be
given to client programmers in a textual document which is prone to errors. Auto-
matic usage by other programs would be considerable harder. Therefore, while size
and clarity of the SOAP message is very good, interoperability becomes a problem.
Since interoperability in GRID environments is a must-have, the approach with
XDR attachments is more favorable.

4.3.2 Compressing XML

An additional techique is compression in the protocol (either HTTP or TCP/IP).
The most powerful compression can be achieved by using common compression
algorithms like zip, gzip or bzip2. Tests conducted for [WBF04] have shown
that network traffic can be reduced by 26% by using gzip compression for HTTP
requests. Nevertheless, this might be not very good for debugging. The same
authors explain that differential encoding for the compression of small files achieves
an average size reduction of random text up to 86%. It should be noted that the
files used for DOUG might yield bigger possible reductions because the files are
larger and because there is usually more redundancy in the matrices. To the
knowledge of the author, there are no Web Service frameworks available that
implement differential encoding.

One software package that implements a differential encoding compression is



56 CHAPTER 4. DOUGSERVICE

XMill [LS00]. An interesting and rewarding future work would be to make XMill
available for Axis or an other Web Service framework.

The W3C has a working group dedicated to the Efficient XML Interchange
(EXI) [Eff]. Their work also includes BinaryXML which is supposed to be smaller
at the cost of clarity. Their first candidate recommendation is due for July 2007.
Adoption into usable frameworks will take longer so it is unclear when the fruits
of their work can be used by Web Service programmers.

4.3.3 Memory cosiderations

In case of the operations that do not use attachments the data is kept longer in
memory then necessary. The data classes could be modeled in a variation of the
Proxy pattern [GHJV95]. The interface of the classes could be maintained but
internally they rely on the file stored on the hard disk. In the case of Assembled-
Matrix arithmetic operations have to be stored in private members of the class as
well because the file on the disk should not be altered so it could be used again
later by the user. This has to be implemented carefully but can reduce memory
usage drastically if the files are large.

4.4 Assessment

In this chapter an approach was given to GRID-enable a legacy application using
the example of DOUG. A wrapper was used to implement the Web Service and
necessary preparations for the execution of the legacy application’s binary. The
wrapper is independent of the implementation language of the legacy application
so any language and Web Service framework can be used to create the wrapper.

It was proven that the naive approach to Web Services, namely object serializa-
tion to XML in particular, can render the Web Service unusable due to performance
issues — although its benefits. If this is the case, then WS-Attachments should be
used to attach files to the operation call. Data files are almost certainly smaller
than serialized data objects especially if binary files are used.

In the case of DOUG interoperability was not yet given. With the usage of
XDR a binary format has been created which files are very small although not
compressed and enable interoperability. This solution will also be beneficial for
other legacy applications, if the XDR library is reachable from the implementation
language. With Fortran this is possible with FXDR.

Compression of Web Services is still immature and except for gzip not avail-
able in the frameworks. Differential encoding needs to be integrated into Web
Service Frameworks, because it’s compression ratings are higher and it is faster
than traditional compression. Soon new impulses can be expected from the W3C



4.4. ASSESSMENT 57

EXI working group. If in future there were major advances in this area, then
the conclusion to use a solution with XDR binaries might be relativated by an
object serialization which result is reasonable small. Differential encoding and
compression would have to be part of that solution, too. For now although, XDR
attachments are part of an optimal solution. It should be noted, that it is more
beneficial to minimize the message in the first place, than to add time-intensive
compression to wasteful communications.



58 CHAPTER 4. DOUGSERVICE



Chapter 5

Extraction of the preconditioner

While the implementation of a Web Service based Eigenvalue solver used the whole
DOUG as a component, this project took a different direction. Here the task was
to extract one part of DOUG — the preconditioner — and make it available as a
component itself. As we will see after carefully analyzing the task, it was realized
that two additional components are needed within the preconditioner. In figure
5.1 a component diagram of the resulting components is shown.

<<component>>

DougService

<<component>>

Preconditioner

<<component>>

CoarseMtx

<<component>>

CoarseVector

Figure 5.1: Component diagram of the preconditioner

The preconditioner code tends to be more volatile than other code. There is
no best way to do a preconditioning since there are conflicting optimization goals.

59



60 CHAPTER 5. EXTRACTION OF THE PRECONDITIONER

Therefore, researchers can benefit if they are able to exchange different algorithms
fast and test their implementations. The extraction of the DOUG preconditioner
will not only benefit the development team to try out new algorithms but it might
also lead to other people using this or any other preconditioner component that
will be developed. These could be offered permanently on the GRID as service.
Then no compilation and configuration is necessary except the ones to find the
service.

5.1 Requirements

Different architectural designs have been made which have different implications.
The designs were required to fulfill the following requirements:

1. The preconditioner must be a separate component from DougService.

2. All necessary data must be passed via a defined interface.

3. The preconditoner component must be able to be used by third parties.

4. DougService must still be reasonable fast.1

5. The communication between the services must be realized as Web Service
communication.

6. The used Web Service framework must be Axis 1.4.

7. The platform as well as the number of CPUs running the services must be
flexible.

5.2 First Architecture

The first architecture is depicted in figure 5.2. DougService behaves externally
exactly as described in chapter 4. Internally, it delegates the calculation of the
precondition matrix to the service with the name Preconditioner.

The number of nodes on which both components run does not need to be equal.
This is due to the nature of the GRID: It is the resource broker’s choice which
resource is chosen for the job. If the user’s job is executed on a specific host, then
it is usually reasonable to use all processors that are available to speed up the
calculation. In figure 5.2 this is exemplarily shown as DougService uses five and
the Preconditioner uses four nodes.

1It was not specified what ”resonable fast” means. Due to the nature of DOUG, an increase
in execution time of 10% is probably not worth the flexibility gain anymore.



5.2. FIRST ARCHITECTURE 61

<<component>>
Preconditioner

<<component>>
DougService

Gather

Serialize

Wire

Deserialize

DistributeGather

Serialize

Wire

Deserialize

Distribute
in old vars

●Number of nodes not equal
●Preconditioner on single node is useless

●Very difficult to
 implement
●Too time 
 consuming

Nodes

MPI Communication

Nodes

Figure 5.2: The first architecture for the Preconditioner Service.



62 CHAPTER 5. EXTRACTION OF THE PRECONDITIONER

The communication has to be prepared in several steps. First the data which
is distributed in the nodes has to be gathered in the root node using MPI Gather

(see figure 2.2). Then it will be serialized to a file. This is necessary because of
requirement 6. Data exchange between DOUG which code base is Fortran and the
wrapper written in Java is done through a file as in chapter 4.1.3.

Since Axis is a Java framework, it cannot be used to add Web Service client
code to DougService. There was not enough time for the author to familiarize
himself with a different framework so a workaround was developed to overcome this
problem. From the Fortran code an executable would be called either blockingly
or non-blockingly that would initiate the Web Service call. This executable would
read the data of the application which has been stored in a file before, prepare
and execute the Web Service call, wait for the result, write the result in a file and
finally terminate. The result is then ready for the application to pick up. In the
architectural diagram the step Wire includes all necessary code for the thin Web
Service client layer. It is obvious that the usage of an executable implementing
the Web Service layer is not a good substitute for the use of a native Web Service
framework.

The Preconditioner service is wrapped similar as the DougService in chap-
ter 4. The wrapper receives the SOAP message, writes the data to a file and then
starts the Fortran code of the preconditioner. The root process deserializes the
data from the file and sets up its data structures. Since there are several nodes
which run the preconditioning in parallel, the data has now to be distributed.
This is very hard though: The distribution algorithm represents the most impor-
tant knowledge of DOUG and would have to be applied to this problem again.
Distributing the data again would also cost more CPU and communication time
than necessary.

Another problem is that the nodes involved with the preconditioner algorithm
have to exchange data three times. They have to gather the coarse matrix and a
coarse vector in all nodes once. This is done by a variant of the MPI function MPI -

AllGather (see chapter 2.3). This MPI communication must be possible on the
host. With inter-node MPI communication within the component an additional
constraint is given to the resource broker namely to pick only hosts where MPI is
possible at all and where the network ports used by MPI are open. It would also
violate the requirement of a component (see chapter 1.3.1) to be as independent
as possible. A possible solution would be to run the preconditioner only sequential
that is on only one node. Then there is no need for MPI communication and also
the problem of redistribution explained in the previous paragraph would no longer
exist. Of course this would contradict the philosophy of DOUG to do as much as
possible in parallel and slow down the calculation too much.

When the Preconditioner is done, the data has to be gathered again, serial-



5.3. SECOND ARCHITECTURE 63

ized and can then be sent back to DougService. This is done via the return value
of the RPC. After the deserialization it has to be distributed back to the right
nodes so that DougService can resume its work.

Web Services are rather slow (cf. chapter 2.1). On the other hand, Web Services
give more flexibility, the ability to split off components and gain a standardized
external interface. Therefore, it makes sense to minimize the amount of Web Ser-
vice communication (size and number of calls) while maximizing its benefits to
DOUG. By splitting the system in subsystems in a way so that not much com-
munication is necessary, we can get the most out of componentization with Web
Service. A simple estimate to compare the performance implication of different
architecture designs is to look into the number of necessary blocking Web Service
calls. Non-blocking calls can be ignored if between the call and the next synchro-
nization enough computation is done. If this is the case, one can assume that
communication is not the bottleneck.

With this architectural design, a call would be executed for every iteration.
While this will very likely be notable, it would not lead to seriously worse commu-
nication times.

To summarize there are three main problems in this approach. The first is that
redistribution of data is necessary because of the different number of nodes that the
services use. The second is that the usage of a non-native Web Service framework
requires extensive workarounds. The last problem is that the MPI communication
between the nodes of the Preconditioner does not fit the philosophy of modern
GRIDs and componentization. Because of this problems another approach was
considered.

5.3 Second Architecture

The second architecture overcomes the cost-intensive redistribution of the data.
This is achieved by using the same distribution scheme for both the DougService

and the Preconditioner. The number of nodes of DougService matches the
number of instances of the Preconditioner. The difference is that no gathering
is necessary because each of the nodes of DougService initiate a Web Service
call (via an external executable as before) and pass just their local data to their
matching Preconditioner service instance.

The architecture diagram in figure 5.3 shows an example with three nodes
which make up DougService. The communication is done similar to the previous
architectural design except that the gather and distribution is no longer necessary
and that several — in this case three — communications happen in parallel.

This approach solves the most severe problem of the first architecture but also
comes at a price: Because every node makes its own call, the number of Web



64 CHAPTER 5. EXTRACTION OF THE PRECONDITIONER

<<component>>
DougService

<<component>>
Preconditioner

Nodes

Service
Instances

Serialize

Wire

Deserialize

Serialize

Deserialize

Wire

MPI Communication

Java program
that handles

WS communication

Will work, but is it wanted? 
GRID resources probably
closed relevant ports for 
MPI communication.

Figure 5.3: The second architecture for the Preconditioner service.



5.4. REPLACING MPI COMMUNICATION 65

Service calls increases to number of iterations times number of nodes. Since the
payload of the calls is also shared over the calls for every iteration, it will not effect
the communication time very strongly. Nevertheless, the overhead involved will
still be greater. Therefore the communication part of this architecture will take
more time than the communication part of the previous architecture.

The author believes that this scheme — local data in one node gets passed to
one ”dedicated” instance of a service — is useful for many parallel programs in
GRIDs. If this approach prevails, it could evolve into a best practice.

5.4 Replacing MPI communication

There are still two problems in this architecture. The MPI communication between
the instances of the Preconditioner is not desirable. In the second architectural
design there is no single point anymore where a MPI boot is possible. Booting
MPI means to start a runtime environment (e.g. a demon on Linux) and supply it
with a list of hosts that are involved in the computation as well as the number of
nodes that will be created used on that host. This is necessary so that the nodes
can ”find” each other. With this architecture, there is no central authority that
can boot MPI or give a list of hosts. Actually, there is a central authority, that
knows, which host run the Preconditioner — the resource broker — but to the
author’s knowledge there is no standard way to query it.

<<component>>
Preconditioner

Service
Instances

<<component>>
CoarseMtx/Vector

Offers operations
●AllSendCoarseMtx 
●AllRecvCoarseMtx
●AllSendCoarseVector
●AllRecvCoarseVector

Figure 5.4: Replacing MPI with Web Service by introducing new components.

The easiest way to solve this dilemma is to replace the MPI communication
in Preconditioner with communication via Web Services. Each run of the Pre-



66 CHAPTER 5. EXTRACTION OF THE PRECONDITIONER

conditioner there are three MPI AllGather communications.The communication
is necessary to exchange the coarse matrix as well as an accompanying coarse
vector. One of these MPI calls is blocking, the others two are non-blocking with
synchronization points relatively far from the initialization of the call. Note that
non-blocking variants of MPI AllGather are not specified by the MPI-2 specifi-
cation [For]. It is rather an unofficial extension which opens a new thread and
does a normal, blocking MPI AllGather from this thread. The MPI AllGather

operations would have to be simulated with Web Services. Therefore one or two
components have to be created as shown in figure 5.4. These components have the
same operation names as the matching Fortran subroutines in the DOUG code.
For identification purposes the services are called CoarseMtx respectively Coar-

seVector resembling naming conventions in the DOUG code, too. Because the
operations of the new services have the same external behavior as the MPI-based
solution they can are easily replaced and the new code can be compared to the old
code in tests.

Axis 1.4 does not support non-blocking calls natively but a call can be easily
made non-blocking by using the same mechanism as described for the MPI All-

Gather variant: Start a new thread and do the call from there. See listing 5.1 on
how to do it in Java.

new Thread () {
public void run() {

// do Axis call here

}
}.start ();

Listing 5.1: Non-blocking Web Service call

Several runs of DougService might run in parallel on one GRID. Or the compo-
nents CoarseMtx and CoarseVector might be used by other parties on the GRID.
Either way the data will very likely be corrupted, if more than one application
uses the components at the same time. Therefore more data storage instances
must be used. When an application calls either of the two components some kind
of identifier must be passed along the data, that groups the participants of one
gather operation. This must be unique in the GRID as long as the operation is
executed. For DougService this means that even before it is parallelized in several
nodes the identified must be agreed upon. This can for example be done by using
a universally unique identifier (UUID) [ITU04]. Implementations of this standard
exist for most popular languages.

Analyzing the number of Web Service calls that are needed it is found that it
has increased by another factor. Every instance of the Preconditioner in every



5.4. REPLACING MPI COMMUNICATION 67

iteration of DougService there are three additional Web Service calls summing up
to number of iterations * number of nodes * 4 while half of those are non-blocking.
While it seems like a fitting architecture, after discussions within the chair it was
decided that the loss of performance through the introduction of a high number of
Web Service calls would be too large. Although it seemed a good idea to benefit
from the increased flexibility and community support by the separation of the
preconditioner it is nested too deep in the code. The internally occurring MPI
communication is an additional obstacle for componentization. Therefore, it was
not proceeded further with the separation of the precondtioner. Still, the author
believes that componentization of legacy code is an interesting and rewarding topic
for GRID users.

If more people need to replace MPI communication with Web Service com-
munication, then it would make sense to create a toolkit with expert knowledge.
It is not a trivial task to imitate MPI with Web Services and near-optimal per-
formance is important. A naive ad-hoc solution would not include performance
optimizations when even the current implementations of MPI do not get optimal
performance [CHPvdG04]. This might be a topic for further research, but first a
cost/benefit analysis is needed.

Although the usage of Web Services is clearly dominated by using it for RPC
as it is done in this thesis, too, Web Services can be viewed as a messaging tech-
nique because they share a common architectural view [Vog03]. Since MPI is also
a messaging techique, it shares characteristics with Web Services. A detailed com-
parison of MPI and Web Services can result in a bridge between those techniques,
which would help componentization efforts of other GRID users very much.



68 CHAPTER 5. EXTRACTION OF THE PRECONDITIONER



Chapter 6

Related work

There has already lots of work been done, which used a wrapper approach to make
legacy application available as a Web Service or on service oriented GRIDs.

In their article [KE02] two IBM employees explain an architecture for wrapping
a legacy application as Web Service using an adapter. They don’t explain how
that adapter would be implemented. On the other hand, they identify the problem
of concurrency which has been factored out for the described prototype. As a
solution they propose the usage of a full fledged transaction, guaranteeing ACID
(Atomicity, Consistency, Isolation and Durability) as well as rollbacks. To gain
the functionality of transactions they suggest usage of EJB session beans.

Through the creation of a so called Generic Application Serive, [SMZ+05] ac-
cessed legacy code by executing binaries as it has been done in this thesis. The
legacy application has not been modified. They also use an approach similar to a
RPC. Interessting is, that they decided to use a different application description
document, than WSDL. It was not elaborated, why WSDL was not chosen, but
their the description document is still based on standards like XML and XML-
Schema. An interface to the Generic Application Service allows the same opera-
tions on all wrapped legacy applications. Their approach has only been tested on
examples that do not need big amounts of data so that the problems described in
this thesis did not occur. Also interoperability was not identified as a problem.

The Grid Execution Management for Legacy Code Architecture (GEMCLA)
[GKT+05] is another tool to deploy legacy code on the GRID. It is integrated into
the GRID portal P-GRADE [KDK+03] and based on Globus Toolkit 3. Here the
legacy application’s code is not changed as well, just a Legacy Code Interface De-
scription (LCID) has to be created which includes the interface to the application.

A step towards componentization was done by [HIWD03] using the Java-C Au-
tomatic Wrapper (JACAW) and the Mediation of Data and Legacy Code Interface
tool (MEDLI). It wraps code that is available as libraries. It can only wrap C li-
braries and monolithic legacy applications like DOUG do not benefit from it. It

69



70 CHAPTER 6. RELATED WORK

offers no support to split off components. When using JACAW wrapped compo-
nents, they can be used in a visual programming language called Triana to model
workflow. It is planned to extend JACAW to make wrapped libraries available as
a Web Service to use it on a GRID but it has not been evaluated so far if libraries
have similar properties as components.

These solutions focus on more or less automatic transformation of legacy appli-
cations into components. While this approach is good for some applications, other
applications do not fulfill the degree of independence required for components.
Those would have to be refactored or would have to gain interoperability through
a wrapper that also handles data conversion. Also, none of those approaches gives
a solution for large data transfers.

Reworking the architecture of a legacy application to a component based one
has not been covered much yet. The authors of [PMB+06] presented a case study
where a Java legacy application using the distributed object middleware ProActive
was componentized and made available on the GRID. They present a software
engineering process how legacy applications can be componentized. Since obejct
oriented languages encourage modular programming more than non object oriented
languages (like Fortran) and since an distributed object framework was already
used, their effort is not directly comparable to this work. Distributed object calls
are natural cut points for componentization, while in shared memory environments
like MPI the communication should be contained in the components.

While in this work Web Services where used to form components and the SOAP
messages in RPC style, Web Services could also be understood as a messaging
technique [Vog03]. The authors of [PTL04b] did tests with small applications that
used first MPI and then Web Service to compare the performance. While they
believe that replacing MPI with Web Services is not generally beneficial, they
recognize that there are some cases when it can be useful. In this thesis, this is
the case. The author of this thesis agrees that researching the similarities between
MPI and Web Services is needed.



Chapter 7

Conclusion and outlook

Using DOUG as a case study, the preparation of a legacy application for mod-
ern GRIDs has been examined. Two complete different approaches have been
considered: The first approach is the wrapping of the whole application as a com-
ponent for service oriented GRIDs and the second is the componentization of the
application into several parts.

In the first part, Web Services have been used to make the component. A
thin wrapper which handles the communication was created. External use of the
component has been shown by the creation of another component, an Eigenvalue
solver, which can be used by other components as well. This has been proven by
the implementation of a graphical user interface.

A focus has been placed on the exchanged data. Three different kinds of
messages have been examined. The data formats used by DOUG before did not
fulfill the requirement of interoperability over different platforms — an imperative
for GRID environments. Therefore, a new data format has been implemented
based on binaries written by the XDR library. Those files were sent within the
SOAP message using WS-Attachments. Usage of those in external applications
is not very convenient because each application has to parse the data by its own.
Since XDR is standard-aware, this is not a big problem. The alternative to use
objects that are serialized to XML according to JAX-RPC is more elegant for
external use. Unfortunately, the huge size of the resulting message forbids the
usage of it in a production environment.

Handling of the new data format based on XDR has been implemented into the
legacy application itself and not in the wrapper so that the users of the application
will benefit from the gained interoperability even without the usage of the Web
Service this way. The solution describes a process which is also applicable for
other legacy applications that should be made available on the GRID. Starting with
modeling the components with UML diagrams, then focusing on the interfaces and
the data exchanges, the programmer should take a close look if the messages are

71



72 CHAPTER 7. CONCLUSION AND OUTLOOK

small enough and interoperable. If the messages are too large, WS-Attachments
with a standardized data format, e.g. XDR, are a very good choice. The SOAP
messages can be profiled and debugged with a proxy like TCPMonitor or NetTool.

Some changes have been suggested or implemented for DOUG itself, too. For
example, it has been shown how refactoring, a technique made for object oriented
systems, can also be used with the Fortran code. A pattern called Fake Polymor-
phism has been identified and applied to the code prior to adding the new data
format. This improved the structure of the source code drastically.

In the second major part of the work, it was researched how DOUG could
be componentized. The target was the preconditioner a part of DOUG which is
volatile and therefore would benefit if it was a component. It was found that
applying a different architecture to a legacy system is hard especially if it uses
a non-object oriented implementation language and distributed memory. If the
data was gathered in one node before it was sent to a different component this
would equal a synchronization barrier. Even worse, the data would have to be
redistributed to a potentially different number of processors again which is not
feasible for DOUG. Therefore, it makes sense to let each node make a call to a
preconditioner service instance by itself without prior data gathering.

A component written in a specific language that is calling another component
and therefore acts as a consumer can not use the wrapper approach anymore. It
must use a Web Service framework in its implementation language or the design
will suffer severely.

An interesting problem is the remaining MPI communication between the pre-
conditioner component instances. For increased independence, the MPI commu-
nication must be replaced with Web Service communication. This results in more
components to act as a helper to gather data. MPI and Web Services share sur-
prising similar characteristics.

Several topics have been identified that require further work. Although DOUG
was prepared as a Web Service for this thesis and comparisons between different
styles of messages have been done, the XDR version of the operations is yet only
available for assembled input. Using the implementation for assembled input as
an example, also elemental input should be migrated to XDR binaries. The work
for that can be done along the lines of the previous implementation:

• Build test cases for the old data format using the testing framework.

• Implement a Fortran program to convert the old style, unformatted binary
format to XDR binary format for all six different file types.

• Refactor reader and writer code within DOUG. Extract methods and/or use
the Fake Polymorphism pattern to improve the structure of the code.



73

• Add necessary configuration parameters to the control file to switch between
XDR and old style formats.

• Add reader and writer code for the XDR format.

• Run the prior made tests with converted input files and check the solutions
for equality, for example with a hash function like SHA1.

• Add the necessary method signatures to I DougService.

• Add the necessary service implementation to DougService.

• Build a simple client to test the service.

After that, the Eigenvalue Solver could be rewritten to use the XDR Web
Services as a base. Since the scientific gain of this is limited, it should only be
done if it is used regularly and considered to be too slow.

Also within DOUG an automatic recognition of the input should be done to
simplify the interface of DougService and improve the usability of standalone
DOUG. The user should not need to configure if old Fortran binary, XDR binary
or formatted text is used as input. DOUG could also distinguish between elemental
or assembled input automatically thus reducing the interface of the Web Service.

At least in the open-source community are surprisingly few products for tool
supported refactoring of non-object oriented languages. The author hopes that
the Eclipse IDE will serve as an incubator for development environments and
refactoring tool suits for non-object oriented languages. For Fortran in particular
the work around Photran [OXJF05] is very promising and should soon be ready
for production use. Design as well as refactoring patterns should be established to
be used in modern IDEs.

Another very surprising fact is that to the knowledge of the author there is no
Web Service framework that includes useful compression of the SOAP message.
GZip compression exists for Axis but its characteristics make it not useful for
compressing SOAP messages. Integration of differential encoding into Web Ser-
vice frameworks is in the opinion of the author a very rewarding task. The Axis
community would appreciate the integration of a software like XMill [LS00] into
the framework. This will not be very difficult, because Axis is already prepared
for the integration of modules.

Not much work has been done in coponentizing legacy software for the GRID
although this is an important topic. The authors of [PMB+06] did research us-
ing already object oriented applications, but for non-object oriented programs —
which are very important, considering the typical user of GRIDs — there is to
the knowledge of the author no research at all, except the architecture design in
this thesis. The research in this area should be intensified. It should also take



74 CHAPTER 7. CONCLUSION AND OUTLOOK

into account distributed memory techniques commonly used in high performance
computing. The findings of this thesis can be a starting point for future work.

Considering the characteristics that Web Services have in common with mes-
saging techniques, it is an interesting task to compare MPI with Web Services on
a functional level. Existing MPI applications can be used to replace MPI com-
munication with SOAP messages. Starting with simple one-to-one communication
and then moving up to group communication similarities and problems can be
identified. In the end it might be possible to create a bridge between MPI and
Web Services which would make componentization of MPI applications easier as
well as help preparation for a deploy on modern GRIDs.

The approach presented in this thesis is different than in other publications.
DOUG has been transformed into a component which can be run on the GRID
not only by wrapping it, but also by changing its properties before. Previous
approaches would have led to a service that lacks independence and is therefore
not suited for the GRID. A repeatable process has been developed to apply the
solution on other legacy software. Also, a first step to legacy application com-
ponentization for the case of distributed memory architectures with non object
oriented implementation languages has been presented, a field which has not been
covered before. Therefore, this work is a significant step to migrate applications
from old GRIDs to modern, service oriented ones.



Bibliography

[Apaa] Apache Software Foundation. Apache Ant Homepage. http://ant.
apache.org/ (25.04.2007).

[Apab] Apache Software Foundation. Apache Maven Homepage. http:

//maven.apache.org/ (25.04.2007).

[Apac] Apache Software Foundation. Axis Homepage. http://ws.apache.
org/axis/ (25.04.2007).

[Apad] Apache Software Foundation. Axis User’s Guide. http://ws.

apache.org/axis/java/user-guide.html (25.04.2007).

[Apae] Apache Software Foundation. Axis2 Homepage. http://ws.

apache.org/axis2/ (25.04.2007).

[Apaf] Apache Software Foundation. Jakarta Commons HTTPClient.
http://jakarta.apache.org/commons/httpclient/ (25.04.2007).

[Ars04] Ali Arsanjani. Service-oriented modeling and architecture.
http://www-128.ibm.com/developerworks/webservices/

library/ws-soa-design1/ (25.04.2007), November 2004.

[Bat] Oleg Batrashev. Instructions for the DOUG testing frame-
work. http://www.dougdevel.org/dougwiki/index.php/Testing
(24.04.2007).

[BDV94] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster
Environment for MPI. In Proceedings of Supercomputing Symposium,
pages 379–386, 1994.

[Bel04] Donald Bell. UML basics: The component diagram.
http://www-128.ibm.com/developerworks/rational/library/

dec04/bell/ (25.04.2007), December 2004.

75

http://ant.apache.org/
http://ant.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://ws.apache.org/axis/java/user-guide.html
http://ws.apache.org/axis/java/user-guide.html
http://ws.apache.org/axis2/
http://ws.apache.org/axis2/
http://jakarta.apache.org/commons/httpclient/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.dougdevel.org/dougwiki/index.php/Testing
http://www-128.ibm.com/developerworks/rational/library/dec04/bell/
http://www-128.ibm.com/developerworks/rational/library/dec04/bell/


76 BIBLIOGRAPHY

[Ber96] Philip A. Bernstein. Middleware: A model for distributed system
services. Communications of the ACM, 39(2):86–98, 1996.

[Bun] Julian J. Bunn. Floppy. http://www.netlib.org/floppy/

(25.04.2007).

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva
Weerawarana. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl (25.04.2007), March 2001.

[CFF+04] Karl Czajkowski, Don Ferguson, Ian Foster, Jeff Frey, Steve Graham,
Tom Maguire, David Snelling, and Steve Tuecke. From OGSI to WS-
Resource Framework: Refactoring and Evolution, Version 1.1, May
2004.

[CH01] W.T. Councill and G.T. Heinemann. Component Based Software
Engineering — Putting the pieces together, chapter 1. Addison Wes-
ley, Boston, 2001.

[Cha96] D. Chappell. Understanding ActiveX and OLE: a guide for develop-
ers and managers. Microsoft Press, Redmond, WA, USA, 1996.

[CHPvdG04] E. W. Chan, M. F. Heimlich, A. Purkayastha, and R. A. van de
Geijn. On optimizing collective communication. In Proceedings of
the International Conference on Cluster Computing, pages 145 – 155.
IEEE, September 2004.

[Coh03] Bram Cohen. Incentives build robustness in BitTorrent. In Workshop
on Economics of Peer-to-Peer Systems, 2003.

[De04] Vaishali De. A foundation for refactoring Fortran 90 in Eclipse.
Master’s thesis, University of Illinois, Urbana-Champaign, 2004.

[Dub05] Manek Dubash. Moore’s Law is dead, says Gordon Moore. http:

//www.techworld.com/opsys/news/index.cfm?NewsID=3477

(25.04.2007), April 2005.

[Eff] Efficient XML Interchange Working Group. EXI Homepage. http:
//www.w3.org/XML/EXI/ (25.04.2007).

[ES01] Dietmar W. Erwin and David F. Snelling. Unicore: A grid com-
puting environment. In Euro-Par ’01: Proceedings of the 7th Inter-
national Euro-Par Conference Manchester on Parallel Processing,
pages 825–834, London, UK, 2001. Springer.

http://www.netlib.org/floppy/
http://www.w3.org/TR/wsdl
http://www.techworld.com/opsys/news/index.cfm?NewsID=3477
http://www.techworld.com/opsys/news/index.cfm?NewsID=3477
http://www.w3.org/XML/EXI/
http://www.w3.org/XML/EXI/


BIBLIOGRAPHY 77

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, University of Cal-
ifornia, Irvine, 2000.

[For] MPI Forum. MPI specifications. http://www.mpi-forum.org/

docs/docs.html (25.04.2007).

[Fos05] Ian Foster. Globus toolkit version 4: Software for service-oriented
systems. In Hai Jin, Daniel Reed, and Wenbin Jiang, editors,
IFIP International Conference on Network and Parallel Computing,
number 3779 in Lecture Notes in Computer Science, pages 2–13.
Springer, December 2005.

[Fow99a] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

[Fow99b] Martin Fowler. Refactoring: Improving the Design of Existing Code,
page 76. Addison Wesley, 1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[GKT+05] A. Goyeneche, T. Kiss, G. Terstyanszky, G. Kecskemeti, T.Delaitre,
P.Kacsuk, and S.C. Winter. Experiences with deploying legacy code
applications as grid services using gemlca. In P.M.A. Sloot, A.G.
Hoekstra, T. Priol, A. Reinefeld, and M. Bubak, editors, Advances
in Grid Computing - EGC 2005, volume 3470/2005 of Lecture Notes
in Computer Science, pages 851–860, Berlin/Heidelberg, July 2005.
Springer.

[Gra97] Graham Hamilton (Editor). JavaBeans Version 1.01-A. Technical
report, Sun Microsystems, August 1997.

[Gu00] M. Gu. Single- and multiple-vector iterations. In Zhaojun Bai, James
Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst, ed-
itors, Templates for the Solution of Algebraic Eigenvalue Problems:
A Practical Guide. SIAM, Philadelphia, 2000.

[HIWD03] Yan Huang, IanTaylor, David W. Walker, and Robert Davies. Wrap-
ping legacy codes for grid-based applications. In Proceedings of
the International Parallel and Distributed Processing Symposium
(IPDPS’03). IEEE, April 2003.

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html


78 BIBLIOGRAPHY

[ITU04] ITU-T Study Group 17. Information technology – Open Systems
Interconnection – Procedures for the operation of OSI Registration
Authorities: Generation and registration of Universally Unique Iden-
tifiers (UUIDs) and their use as ASN.1 object identifier components.
Technical Report X.667, International Telecommunication Union,
September 2004.

[Kar] Mai-Liis Karring. Performance analysis tools and methods for MPI
programs (working title). master thesis in progress.

[KB05] Y. Kulbak and D. Bickson. The emule protocol specification. Tech-
nical Report TR-2005-03, Hebrew University of Jerusalem, 2005.

[KDK+03] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton,
and G. Gombás. P-grade: A grid programming environment. Journal
of Grid Computing, 1(2):171–197, June 2003.

[KE02] Dietmar Kübler and Wolfgang Eibach. Adapting legacy applications
as Web services. http://www-128.ibm.com/developerworks/

library/ws-legacy/ (27.04.2007), Januar 2002.

[Ker04] Joshua Kerievsky. Refactoring to Patterns. Addison-Wesley, August
2004.

[KNN03] Michael Kirchhof, Manfred Nagl, and Ulrich Norbisrath. EAI heißt
insbesondere Integration: Probleme und die Rolle technischer Hilf-
smittel (Enterprise Application Integration is in Particular Integra-
tion: Problems and the Role of Technical Utilities). In Proceedings
of ONLINE 2003. Online Verlag, 2003.

[LCG05] LCG TDR Editorial Board. LHC Computing Grid - technical design
report version 1.04. Technical report, CERN, June 2005.

[LS00] Hartmut Liefke and Dan Suciu. Xmill: an efficient compressor for
xml data. SIGMOD Rec., 29(2):153–164, 2000.

[Met96] Michael Metcalf. A program to convert FORTRAN 77 source form
to Fortran 90 source form. ftp://ftp.numerical.rl.ac.uk/pub/

MandR/convert.f90 (25.04.2007), December 1996.

[Nat] National Center for Supercomputing Applications at the Univer-
sity of Illinois (NCSA) and University of New Mexico (UNM) and
Boston University (BU) and University of Kentucky (UKy) and
Ohio Supercomputing Center (OSC). Introduction to MPI. http:

//webct.ncsa.uiuc.edu:8900/public/MPI/ (25.04.2007).

http://www-128.ibm.com/developerworks/library/ws-legacy/
http://www-128.ibm.com/developerworks/library/ws-legacy/
ftp://ftp.numerical.rl.ac.uk/pub/MandR/convert.f90
ftp://ftp.numerical.rl.ac.uk/pub/MandR/convert.f90
http://webct.ncsa.uiuc.edu:8900/public/MPI/
http://webct.ncsa.uiuc.edu:8900/public/MPI/


BIBLIOGRAPHY 79

[OAS07] OASIS Web Services Notification (WSN) TC. Web services
notification (WSN) specifiations. http://www.oasis-open.

org/committees/tc home.php?wg abbrev=wsn#technical

(25.04.2007), March 2007.

[O’T] Neil O’Toole. NetTool Homepage. http://nettool.sourceforge.
net/ (25.04.2007).

[OXJF05] Jeffrey Overbey, Spiros Xanthos, Ralph Johnson, and Brian Foote.
Refactorings for Fortran and high-performance computing. In SE-
HPCS ’05: Proceedings of the second international workshop on Soft-
ware engineering for high performance computing system applica-
tions, pages 37–39, New York, NY, USA, 2005. ACM Press.

[Pie] David W. Pierce. FXDR Homepage. http://meteora.ucsd.edu/
∼pierce/fxdr home page.html (25.04.2007).

[PL03] Randall Perrey and Mark Lycett. Service-oriented architecture. In
Symposium on Applications and the Internet Workshops, pages 116–
119. IEEE, Januar 2003.

[PMB+06] Nikos Parlavantzas, Matthieu Morel, Françoise Baude, Fabrice Huet,
Denis Caromel, and Vladimir Getov. Componentising a scientific
application for the grid. Technical Report 31, CoreGRID, Institute
on Grid Systems, Tools and Environments, April 2006.

[PTL04a] D. Puppin, N. Tonellotto, and D. Laforenza. Using web services
to run distributed numerical applications. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface, volume
3241/2004 of Lecture Notes in Computer Science, pages 207–214,
Berlin/Heidelberg, September 2004. Springer.

[PTL04b] Diego Puppin, Nicola Tonellotto, and Domenico Laforenza. Using
Web Services to Run Distributed Numerical Applications, volume
3241/2004 of Lecture Notes in Computer Science, pages 207–214.
Springer, Berlin/Heidelberg, November 2004.

[Ras00] Jef Raskin. The Humane Interface: New Directions for Designing
Interactive Systems. Addison-Wesley, 1st edition, March 2000.

[Rip02] M. Ripeanu. Peer-to-peer architecture case study: Gnutella net-
work. In Proceedings of the First International Conference on Peer-
to-Peer Computing (P2P’01), Los Alamitos, CA, USA, 2002. IEEE
Computer Society.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn#technical
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn#technical
http://nettool.sourceforge.net/
http://nettool.sourceforge.net/
http://meteora.ucsd.edu/~pierce/fxdr_home_page.html
http://meteora.ucsd.edu/~pierce/fxdr_home_page.html


80 BIBLIOGRAPHY

[Rob03] Roberto Chinnici et al. Java API for XML-based RPC — JAX-
RPC1.1. Technical Report JSR-101, Java Community Process, Oc-
tober 2003.

[Saa96] Yousef Saad. Iterative methods for sparse linear systems. PWS, 1st
edition, 1996.

[SBG04] B.F. Smith, P.E. Bjorstad, and W.D. Gropp. Domain Decompo-
sition: Parallel Multilevel Methods for Elliptic Partial Differential
Equations. Cambridge University Press, 2004.

[SC06] Borja Sotomayor and Lisa Childers. Globus Toolkit 4: Programming
Java Services. Morgan Kaufmann, 2006.

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Com-
ponent Software: Beyond Object-Oriented Programming. Addison
Wesley, Harlow, 2nd edition, 2002.

[SKM+02] David Stainforth, Jamie Kettleborough, Andrew Martin, Andrew
Simpson, Richard Gillis, Ali Akkas, Richard Gault, Mat Collins,
David Gavaghan, and Myles Allen. Climateprediction.net: Design
principles for public-resource modeling research. In S. G. Akl and
T. Gonzalez, editors, Proceedings of the 14th IASTED International
Conference on parallel and distributed computing systems, pages 32–
38, Camebridge, USA, November 2002.

[SMZ+05] Vivekananthan Sanjeepan, Andréa Matsunaga, Liping Zhu, Herman
Lam, and José A.B. Fortes. A service-oriented, scalable approach to
grid-enabling of legacy scientific applications. In Proceedings of the
IEEE International Conference on Web Services (ICWS’05). IEEE,
July 2005.

[Som07] Ian Sommerville. Software Engineering. Pearson Education, Harlow,
8th edition, 2007.

[SV06a] R. Scheichl and E. Vainikko. Additive schwarz and aggregation-
based coarsening for elliptic problems with highly variable coeffi-
cients. Bath Institute For Complex Systems Preprint 9/06, 2006.

[SV06b] R. Scheichl and E. Vainikko. Robust aggregation-based coarsening
for additive schwarz in the case of highly variable coefficients. In
P. Wesseling, E. ONate, and J. Periaux, editors, Proceddings of the
European Conference on Computational Fluid Dynamics, ECCO-
MAS CFD 2006, TU Delft, 2006.



BIBLIOGRAPHY 81

[VB] Anke Visser and Oleg Batrashev. Fortran Extension for Doxygen.
http://dougdevel.org/index.php?page=doxygen (25.04.2007).

[Vog03] W. Vogels. Web services are not distributed objects. IEEE Internet
Computing, 7(6):59–66, December 2003.

[W3C06] W3C Web Services Addressing Working Group. Web Ser-
vices Addressing 1.0 - Core. http://www.w3.org/TR/2006/

REC-ws-addr-core-20060509/ (25.04.2007), May 2006.

[WBF04] C. Werner, C. Buschmann, and S. Fischer. Compressing SOAP mes-
sages by using differential encoding. In Proceedings of the IEEE In-
ternational Conference on Web Services, pages 540–547. IEEE, July
2004.

[Wik05] Wikipedia user Kku. Virtual organisation diagram. http:

//en.wikipedia.org/wiki/Image:VirtOrg.png (25.04.2007), Au-
gust 2005.

[YHW05] Ying Ying, Yan Huang, and David W. Walker. A performance eval-
uation of using SOAP with attachments for e-science. In Proceedings
of the UK e-Science Meeting, September 2005.

http://dougdevel.org/index.php?page=doxygen
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://en.wikipedia.org/wiki/Image:VirtOrg.png
http://en.wikipedia.org/wiki/Image:VirtOrg.png


82 BIBLIOGRAPHY



List of Figures

1.1 Communication aided by middleware. . . . . . . . . . . . . . . . . . 5
1.2 Five layers of an service oriented architecture [Ars04] . . . . . . . . 6
1.3 The main terms introduced here are abstract to a different degree. . 8

2.1 Communication schema for MPI Broadcast . . . . . . . . . . . . . . 17
2.2 Communication schema for MPI Gather . . . . . . . . . . . . . . . . 17
2.3 Communication schema for MPI AllGather . . . . . . . . . . . . . . 18
2.4 Communication schema for MPI Reduce . . . . . . . . . . . . . . . . 18
2.5 A generic component diagram. (taken from [Bel04]) . . . . . . . . . 19

3.1 Virtual Organizations accessing different and overlapping sets of
resources. (repainted from [Wik05]) . . . . . . . . . . . . . . . . . . 22

3.2 WS-* specifications used in modern GRID frameworks. . . . . . . . 25
3.3 Domain decomposition of 15× 15 matrix by DOUG. . . . . . . . . 28

4.1 Component diagram of the Eigenvalue solver . . . . . . . . . . . . . 34
4.2 Unformatted data is written enclosed by markers. . . . . . . . . . . 38
4.3 In OO a Strategy pattern would be used to reduce conditionals. . . 45
4.4 The TCPMonitor in use while debugging SOAP messages. . . . . . 50

5.1 Component diagram of the preconditioner . . . . . . . . . . . . . . 59
5.2 The first architecture for the Preconditioner Service. . . . . . . . . . 61
5.3 The second architecture for the Preconditioner service. . . . . . . 64
5.4 Replacing MPI with Web Service by introducing new components. . 65

83



84 LIST OF FIGURES



Listings

2.1 A typical SOAP message . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 An example WSDL file . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Interface I DougService . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Interface I IterativeEigenvalueSolver . . . . . . . . . . . . . . . 37
4.3 An example DOUG control file for a conversion from elemental input

to assembled input . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Code snippet from main.F90 . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Code snippet from aggr.F90 . . . . . . . . . . . . . . . . . . . . . . 42
4.6 New extracted subroutine in main drivers.F90 . . . . . . . . . . . 43
4.7 Code blocks in main.F90 and aggr.F90 have been replaced by sub-

routine call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.8 An example where Fake Polymorphism should be used. . . . . . . . 46
4.9 The same code after application of Fake Polymorphism. . . . . . . . 47
4.10 Type mapping registration . . . . . . . . . . . . . . . . . . . . . . . 50
4.11 Possible usage of JavaBean type mapping registration . . . . . . . . 51
4.12 Possible implementation of registerBeanMapping . . . . . . . . . . 52
5.1 Non-blocking Web Service call . . . . . . . . . . . . . . . . . . . . . 66

85


	Introduction
	Motivation
	Overview
	Definition of terms
	Component
	Middleware
	Module
	Service Oriented Architecture
	Service
	Discrimination

	Solution Sketch

	Used Techinques
	Web Service
	Web Services Description Language
	Message Passing Interface
	UML component diagram

	Current Research
	GRIDs
	Componentizing legacy applications
	DOUG
	Refactoring Fortran
	Necessary Research

	DougService
	Architecture
	Component technology
	Component scope
	DougService --- Wrapper for DOUG
	IterativeEigenvalueSolver -- Calculating Eigenvalues
	Interoperability with text and binary data files

	Implementation issues
	Control file vs. set of default CLI parameters
	Two executables
	Smelly: Code Duplication
	Refactoring with Fake Polymorphism
	Streaming vs. Attachments
	Debugging the RPC
	Build process
	Limitations of the prototype

	Performance
	Size of SOAP message
	Compressing XML
	Memory cosiderations

	Assessment

	Extraction of the preconditioner
	Requirements
	First Architecture
	Second Architecture
	Replacing MPI communication

	Related work
	Conclusion and outlook

