
U N I V E R S I T Y O F T A R T U

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science speciality

Lauri Tulmin

A Conjugate Gradient Solver on the
PlayStation 3 - a native approach

Master Thesis (30 EAP)

Supervisor : Ulrich Norbisrath, PhD

Author : ... �.....� May 2010

Supervisor : .. �.....� May 2010

Allowed to defence

Professor : : .. �.....� May 2010

TARTU 2010

Table des matières

Introduction 3

1 Cell broadband engine architecture 6

1.1 The Power Processing Element . 6

1.2 The Synergistic Processing Element . 7

1.3 Communication between PPE and SPE 11

1.3.1 DMA . 11

1.3.2 DMA lists . 11

1.3.3 Mailboxes . 11

1.4 The SPU instruction set . 12

1.5 The Memory Subsystem . 17

1.6 The Element Interconnect Bus . 18

1.7 Computing performance . 18

1.8 Programming model . 20

2 Conjugate gradient method 23

2.1 Practical uses of the conjugate gradient method 24

3 Programming conjugate gradient 26

3.1 Matrix representation . 26

3.2 Basic operations . 27

3.3 Implementation of the Conjugate Gradient algorithm 28

3.4 Parallelization . 30

4 Implementing conjugate gradient on the Cell 31

5 Estimating conjugate gradient performance on the Cell 37

5.1 Flops and CG . 37

5.2 Actual and estimated performance . 39

Conclusions 42

Summary (in Estonian) 43

Bibliography 44

2

Introduction

The ability of modern computers to solve previously intractable problems and simulate

complex real world processes using mathematical models gives scientists and engineers

invaluable information that aids them in their research. Computer simulations of real

world problems often result in solving large systems of linear equations. The conjugate

gradient method [21] is a well-known algorithm for solving large sparse linear systems

that are symmetric and positively de�nite. In this thesis, I will describe the Cell Broad-

band Engine Architecture (CBEA) [16, 6], that is the basis of the Sony PlayStation 3,

and my own implementation of the conjugate gradient algorithm for this hardware archi-

tecture. The implemented solver uses double precision �oating point numbers and only

the basic programming library for the Cell platform [8], a similar solution based on higher

level libraries, such as DaCS (Data Communication and Synchronization Library) [7], is

described by Toomas Laasik in his master's thesis [18].

For a long time the capabilities of digital electronic devices have been linked to Moore's

Law [20]. Moore's Law is based on an long term observation that the number of transistors

that can be placed inexpensively on an integrated circuit doubles every 18 to 24 months.

The law is named after Intel co-founder Gordon E. Moore, who introduced the concept in

1965. Although Moore said nothing about improved performance of the microprocessors,

the exponential growth in the number of transistors roughly translated to the exponential

increase of performance of microprocessors.

By 2006 the previously used ways of increasing processor performance, such as in-

creasing the operating frequency by reducing the amount of work done per cycle while

increasing the pipeline depth, had started giving diminishing returns [22]. Designing more

performant single core processors was getting more and more di�cult, mainly due to the

increased power usage and heat generation. It was predicted that by 2005 high-end pro-

cessors would radiate the same heat volume per square centimeter as a nuclear reactor

shell, by 2010 � as a rocket nozzle, by 2015 � as the Sun's surface. Even if the chips could

be made thermally resistant to such temperatures, for consumer electronics the size of the

cooling system, the maximum airspeed and the maximum allowable temperature of air

leaving the system would still impose a limit to tolerable power consumption. Although

manufacturers had trouble squeezing more performance out of traditional uni-processor

centric designs, the market still expected the performance of the processors to continue

increasing at the same rate as previously. The processor makers had to �nd a new way

to improve their chips and satisfy the market's expectations as further increasing the

operating frequency would also increase the power consumption, which in turn would in-

crease the heat dissipation. To overcome the challenge of delivering double performance

3

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

S
pe

ed
up

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Number of Processors

Amdahl’s Law

Parallel Portion
 50%
 75%
 90%
 95%

Figure 1 � Expected speedup for a program using multiple processors [1].

the focus shifted from building faster single-core processors to adding multiple cores to a

single processor.

The amount of performance gained from using a multiple processors depends strongly

on the software algorithms and their implementation. In particular the possible gains of

using multiple processors are limited to the parts of the software that can be parallelized

to run simultaneously on these processors. This e�ect is described by Amdahl's law [1, 3]

which states that the expected speedup from using multiple processors is limited by the

time needed for the sequential part of the program. Amdahl's law is best illustrated by

Figure 1. In the best case, where the problem is embarrassingly parallel, the speedup factor

may be near the number of processors used. In practice many applications are not easily

parallelizable and therefore they gain a much smaller speedup from running on multi-core

machines. Also, there is no getting around the fact that creating a properly multi-threaded

application, that scales across many cores, is a signi�cantly more complex task than

writing traditional linear code. Although the Amdahl's law was postulated long before

the emergence of the multi-core processors in a paper published in 2008 Mark D. Hill and

Michael R. Marty [15] �nd that even in the multi-core era researchers should still seek

methods of speeding up sequential execution. The authors of the previously mentioned

paper also propose that for better performance to cost ratio it would be bene�cial to

design some cores more powerful than the others. This would allow for fast execution of

the sequential part on the more powerful cores with wasting less resources on the idle

cores while still allowing for executing the parallel part on all of the cores simultaneously.

Another major barrier hit by conventional microprocessor is the increased latency of

accessing the system main memory. This is known as the memory wall [25]. The problem

is that the frequencies of the dynamic random access memory (DRAM) have not been

increasing at same rate as the processor's operating frequencies, thus the memory access

latencies have been increasing with each new generation of microprocessors. A micropro-

cessor with sequential execution model assumes that each instruction is completed before

the execution of the next instruction begins. This means that in order to hide the memory

4

access latencies, in case of a cache miss, the processing can proceed only if instructions

are executed speculatively. This in turn makes the processor designs signi�cantly more

complex. The probability that useful work is being speculatively completed decreases

every time the processor must speculate in order to continue [16].

The CBEA described in this paper was designed from the ground up to address

the diminishing returns o�ered by frequency oriented single-core processor designs by

exploiting application parallelism through multiprocessing. The CBEA design also tackles

the memory wall by a processor organization that allows for more memory bandwidth to

be used e�ectively by allowing more memory transactions to be in �ight simultaneously.

The motivation of this paper is to study the unique hardware architecture used in the

Sony PlayStation 3 and provide an implementation of the conjugate gradient algorithm

that would utilize the computational resources of the hardware as much as possible. The

�rst chapter gives an overview of the CBEA architecture and the programming models

used on this platform. In the second chapter I will give a brief description of the conjugate

gradient method. The third chapter introduces an implementation of the conjugate gra-

dient method. The fourth chapter will discuss an implementation of conjugate gradient

method for CBEA. The �fth and �nal chapter will provide the performance estimates for

the previously described implementation.

5

Chapitre 1

Cell broadband engine architecture

In this chapter I will describe the hardware architecture used in the Sony PlaySta-

tion 3. This hardware is the Cell Broadband Engine Architecture (CBEA) [16, 6]. It is a

processor design jointly developed by Sony Computer Entertainment, Toshiba and IBM.

The CBEA came to existence from a challenge posed by Sony and Toshiba to provide

a power and cost e�cient high-performance processor for a wide range of applications.

The initial development of the CBEA was carried out in Austin, Texas over a four year

period starting from March 2001.

CBEA is a heterogeneous processor architecture that consists of a Power Processing

Element (PPE), augmented with 8 specialized co-processors called Synergistic Processing

Elements (SPE). The main building blocks of the CBEA are shown on Figure 1.1 - SPEs,

PPE, the Memory Interface Controller (MIC) and the Element interconnect Bus (EIB),

each of these will be explored in more detail throughout this chapter. The central piece

in the CBEA is the PPE. On its own, the PPE acts as a conventional processor that

does not provide many additional bene�ts when compared to other modern processor

architectures. What sets Cell apart from other processor architectures are the additional

SPEs. The SPEs use a novel Single Instruction Multiple Data (SIMD) design, which is well

suited for data intensive processing like that found in multimedia, gaming, cryptography

and scienti�c computing applications.

The high number of cores gives improved performance to applications with thread level

parallelism regardless of their ability to exploit data level parallelism. On the PlaySta-

tion 3 one SPE is reserved for the operating system and one is locked to reduce manu-

facturing defects. The remaining six SPEs are available to the applications.

1.1 The Power Processing Element

The heart of the CBEA is the PPE, which is used to run the operating system,

manage resources and handle input and output. It also distributes the workload between

the SPEs and coordinates their operation. The PPE is an IBM 64-bit PowerPC [13] core

with Symmetric Multi Threading (SMT) allowing two independent threads of execution,

clocked at 3.2 GHz. It has a 32 KiB instruction and a 32 KiB data level 1 cache and a

512 KiB level 2 cache. It also includes a vector multimedia extension (VMX) unit with

6

Figure 1.1 � CBEA overview[6].

SIMD �oating point and integer instructions. Due to its similarity to other PowerPC

based processors the PPE can be used to run a wide variety of applications already

ported to the PowerPC architecture. The main design goals of the PPE were maximizing

the performance/power ratio as well as the performance to area ratio.

Although the theoretical peak performance of single precision �oating point operations

is 25.6 GFLOPS and 6.4 GFLOPS for double precision �oating point, the attainable

performance is much lower. In the CBEA architecture the main task of the PPE is

running the operating system and orchestrating the work of the SPEs that provide the

bulk of the computational resources.

1.2 The Synergistic Processing Element

An SPE is a 128-bit RISC processor consisting of a Synergistic Processing Unit (SPU),

that is the part of the SPE which actually runs your code, and a Memory Flow Controller

(MFC), that is used to communicate with the system main memory and other SPEs. Each

SPE is an independent processor running an independent application thread. Figure 1.2

shows the main components of the SPE.

The SPEs do not have direct access to the main memory, but only a small local

memory store for e�cient instruction and data access. For current hardware the size

of the local store is 256 KiB, but as the local store resides in a 32-bit address space,

the architecture supports local store sizes up to 4 GiB. The local store is di�erent from

traditional processor caches, as it is not transparent to the programmer, neither does it

prefetch data from the system memory. It can be viewed as a software managed cache,

whose content is explicitly controlled by the programmer.

The SPU has 128 general purpose registers, each of them is 128 bit wide. However,

the point of the SPU is not to do operations on 128-bit values. Instead the SPU is

7

Figure 1.2 � SPE overview [6].

a vector processor, meaning that the registers are divided into multiple smaller values

and the instructions operate on all of these values simultaneously. This is known as

Single Instruction Multiple Data (SIMD), or data level parallelism. The registers may

be treated as four distinct 32-bit values (32 bits is considered to be the word size on

the SPUs), sixteen 8-bit values (byte), eight 32-bit values (halfword), two 32-bit values

(doubleword) or a single 128-bit values (quadword). All instructions can use any of the 128

registers, there are no instructions that must use an instruction speci�c register or subset

of registers. The high number of registers means that the SPU can keep lots of temporary

and intermediate values around without having to put them back to the memory, to free

some registers, like on most other architectures.

An SPU has two execution pipelines. The �oating point and integer arithmetic units

are on the even pipeline while the rest of the functional units are on the odd pipeline.

The SPU can issue and complete up to two instructions per cycle, one on each execution

pipeline. A dual issue (see Figure 1.3) occurs when a group of fetched instructions has

two issuable instructions, one of which is executed by a unit on the even pipeline and the

other by a unit on the odd pipeline [6].

The distinguishing feature of the SPU architecture is its simplicity. To save valuable die

space and increase e�ciency, SPU designers have omitted functionality, such as support

for misaligned memory access, second level processor cache and branch prediction, which

is commonly seen on other architectures. Any complexity reduction directly translates

into better performance as the saved die space allows for additional cores per given area.

The lack of misaligned memory access means that both memory read and write oper-

ations return a single quadword by truncating the low order four address bits. When the

application wishes to perform a load that crosses the quadword boundary it is possible to

emulate it by loading to adjacent quadwords and perform a data merge operation using

SPU shu�e instruction. The reasoning behind this design decision is that the support

for unaligned load would have incurred a substantial cost. One possible implementation

option would have been to preallocate bandwidth to perform two memory accesses at

instruction issue time, thereby reducing the available bandwidth two times even if the

access was properly aligned. Another option would have been to optimistically assume

8

Load i

Compute i

Store i

Load 0

Load 1

Load i-1
Store i+1

Store n-1

Store n

Compute 0

Compute i

Compute n

Figure 1.3 � Pipeline and dual issue .

aligned access and in case of an unaligned access perform a recovery sequence. However,

this would mean a penalty to every unaligned access. Instead the designers chose to im-

plement an e�cient common case and let the compiler generate an explicit dual load and

data merge sequence if the data alignment can not be determine at compile time [14].

For programmers using higher level languages this means that to create e�cient code

the compiler must be given enough information to properly recognize the aligned data

accesses.

Instead of having a second level cache the SPUs have a programmatically controlled

local store. This simpli�es the architecture by eliminating complex cache hit/miss de-

tection, miss recovery and cache coherence management. It provides low latency deter-

ministic memory access to the SPU. Deterministic memory access aids static scheduling

of the SPU instructions as the memory load/store instructions are guaranteed to take 6

cycles. Compilers can take advantage of the deterministic memory access and arrange the

instructions so that the computation will start on the �rst cycle after the load completes.

While most of the modern microprocessor architectures include sophisticated logic to

predict which code branch is executed (e.g. if-then-else construct) before this is known

for sure, the SPU designers decided to not implement this feature. The purpose of the

branch prediction is to improve the �ow in the instruction pipeline. Without the branch

prediction the processor would have to wait till the conditional jump instruction is ex-

ecuted to know where the next instruction to be executed is. Branch prediction tries

to avoid this by guessing whether the conditional branch is more likely to be taken or

not and speculatively fetches and executes instructions from one of the branches. If the

branch instruction is reached and the prediction turns out to be wrong the speculatively

executed instructions are discarded and the pipeline restarts from the correct branch.

On the SPU the idea of the static instruction schedule has also been applied to branch

prediction, which is implemented by a prepare to branch instruction. The compiler inserts

this branch prediction hint instruction to predict the target branch so that the instruc-

9

tion prefetch from the target branch address can be initiated ahead of time. The prepare

to branch instruction accepts two addresses, a trigger address and a target address, and

fetches instructions from the speci�ed target address into a branch target bu�er. When

the instruction fetch reaches the trigger address, the instruction stream continues exe-

cution with instructions from the target bu�er to avoid a branch delay penalty. Both

mispredicted and non hinted taken branches incur a misprediction penalty [14]. From a

software development perspective this means that an unpredictable branch in critical code

path will incur a signi�cant performance penalty. To solve this issue the SPU has several

conditional instructions, which allow conditional operations to occur without branching.

The program will calculate answers for both branches and then use a conditional select

instruction to pick the correct answer.

To increase processing power high performance microarchitectures try to increase

Instruction Level Parallelism (ILP). ILP is the measure of how many instructions can be

performed simultaneously. The techniques to increase ILP include :

� Instruction pipelining.

� Superscalar execution with multiple execution units. Superscalar processors can,

for example, run multiple arithmetic operations in parallel, providing there are no

data dependencies between the operations.

� Out-of-order execution where instructions are executed in any order if there are no

data dependencies.

� Register renaming, which refers to a technique where operands are placed to a

di�erent register than indicated by the instruction. This is used to enable out-of-

order execution.

� Speculative execution to allow execution of instructions before it is certain whether

this execution path is taken.

� Branch prediction is used to avoid stalling while it is determined which code path

should be taken. This is used together with speculative execution.

In contrast, the SPU executes instructions in the order they appear in the program code

and only has one execution unit of each type. To reduce unnecessary stalls because of data

dependencies programmers can take advantage of the large number of registers on SPU

and loop unrolling. The goal of loop unrolling is to reduce the number of instructions that

control the loop, such as the of the loop test on each iteration. Loops can be re-written as

a repeated sequence of similar independent statements to reduce this overhead. Also this

often helps instruction scheduling. By having more independent instructions the compiler

can eliminate data dependency stalls.

The data parallel nature of SPU provides a major advantage to programs with even

modest amounts of data parallelism over transforming data level parallelism into instruc-

tion level parallelism. Traditional cores often take the latter approach, which requires

processing and tracking the increased number of instructions, and often yields signi�cant

penalties because parallelism must be rediscovered in the instructions [14].

Local store with deterministic memory access latency and static instruction schedule

make SPU architecture highly predictable. This allows for a cycle accurate simulator [10]

and static program analysis to determine the expected cycle count of the given algo-

rithm. This, in turn, makes it easier for software developers to �nd ine�ciencies in their

10

implementations.

1.3 Communication between PPE and SPE

The SPEs only have direct access to their own dedicated local store. If the SPE needs

to access the system main memory or the local store of another SPE, then it needs to

initiate a DMA data transfer operation. Each SPE has its own Memory Flow Controller

(MFC) that allows for streaming data in and out of the local stores in parallel with the

program execution.

1.3.1 DMA

The SPE can initiate up to 16 DMA transfers in parallel using the DMA queue. Most

of the DMA commands can be assigned a 5-bit identi�er called the Tag Group ID. As the

DMAs are processed out-of-order by the DMA engine, the software can use the tag group

identi�er to check or wait on the completion of all queued commands in one or more tag

groups. To order the DMA commands within the queue one can use fences and barriers.

� Execution of fenced command option is delayed until all previously issued com-

mands within the same tag group have been performed.

� Execution of a barrier command option and all subsequent commands is delayed

until all previously issued commands in the same tag group have been performed.

The SPE DMA engine supports DMA transfers of sizes 1, 2, 4, 8 or a multiple of 16 bytes,

with sizes up to 16 KiB per transfer. The source and target address of the DMA transfer

must be aligned to 16 byte boundary, although 128 byte alignment is preferable. For

maximum performance it is best to make sure that the source and destination addresses

have the same quadword o�set within a PPE cache line, where the PPE cache line size

is 128 bytes. Quadword-o�set-aligned data transfers generate full cache line bus requests

for every transferred chunk of data, except possibly the �rst and last chunk. Transfers

that start or end in the middle of a cache line transfer a partial cache line (less than 8

quadwords) in the �rst or last bus request, respectively [23].

1.3.2 DMA lists

SPE DMA engine also supports scatter-gather memory access via DMA lists. These

operations take a list from the local store as argument. Each element in the list contains

a transfer size and the address of the transferred element in main memory. For list trans-

fers, the same alignment rules apply as to normal DMA operations. Each DMA transfer

speci�ed in a list has a size from one quadword up to 16 KiB. The maximum size of the

list is limited to 2048 entries.

1.3.3 Mailboxes

While DMA transfer allows transfer of up to 16 KiB of data between the main memory

and each SPE's local store, mailboxes are designed for transfer of 32-bit data between

11

the PPE and the SPE. To put it another way, mailboxes o�er a simple way to transfer

small data chunks such as status information and parameters. The MFC provides three

types of mailboxes, each with a di�erent behavior and data transfer direction [19].

1. SPU Inbound Mailbox Used to send data from the PPE to the SPE. This mailbox

has space for storing up to four 32-bit messages at a time. If no message is found

when the SPE program accessed the queue, the SPE stalls until data is written by

the PPE program.

2. SPU Outbound Mailbox Used to pass data from the SPE to the PPE. This mailbox

has the capacity to accept only one 32-bit message. If the SPU outbound mailbox

is full, writing of the next data is suspended until the PPE reads the data from the

queue.

3. SPU Outbound Interrupt Mailbox Like the SPU outbound mailbox, this is used to

send data from the SPE to the PPE. When this mailbox is written, however, an

interrupt event is generated to notify the PPE when to read the data.

1.4 The SPU instruction set

The SPU Instruction Set Architecture (ISA) [11] is designed to achieve better per-

formance to cost ratio than general purpose processors by reducing the power and chip

area size requirements to implement the instructions. The key features of the architec-

ture and implementation as outlined in Table 1-1 presented in the Synergistic Processor

Instruction Set Architecture [11] speci�cation are listed in Table 1.1

The SPU has 128 general purpose registers, each of these registers contains 128 data

bits. The same registers can hold both �oating point and integer data. The SPU uses a

single SIMD instruction set for both scalar and vector data, this means that all instruc-

tions operate on the full register, by treating the register as vector of multiple elements

of the same type. Scalar elements are handled by loading them to a preferred slot of the

vector, computing on the full vector and extracting the result from the preferred slot.

The SPU is an in-order dual-issue statically scheduled architecture. It has two in-

struction pipelines with each instruction pre-assigned to execute on only one of those

pipelines. Two SIMD instructions can be issued per cycle :

� one compute instruction on even pipeline, see Table 1.2

� one memory operation on odd pipeline, see Table 1.3

Dual issue is only possible when :

� there are no dependencies

� operands are available

� the even-addressed instruction is an even pipeline instruction

� the odd-addressed instruction is an odd pipeline instruction, and

� the instructions are ordered even pipeline followed by odd pipeline.

Although the SPU ISA supports integer arithmetics it is still geared towards �oating

point. For example the SPU ISA implements only 16-bit integer multiplication in hard-

ware. 32-bit integer multiplication can be emulated by executing �ve instructions, three

12

Feature Description

128-bit SIMD execution unit orga-
nization

Many of the applications previously mentioned al-
low for single-instruction, multiple- data (SIMD) con-
currency. In an SIMD architecture, the cost (area
and power) of fetching and decoding instructions is
amortized over the multiple data elements processed.
A 128-bit (most commonly 4-way 32-bit) SIMD has
commonality with SIMD processing units in other
general-purpose processor architectures and the ex-
isting code base to support it.

Software-managed memory Whereas most processors reduce latency to memory
by employing caches, the SPU in the CBEA imple-
ments a small local memory rather than a cache. This
approach requires approximately half the area per
byte and signi�cantly less power per access, as com-
pared to a cache hierarchy. In addition, it provides
a high degree of control for real-time programming.
Because the latency and instruction overhead asso-
ciated with direct memory access (DMA) transfers
exceeds that of the latency of servicing a cache miss,
this approach achieves an advantage only if the DMA
transfer size is su�ciently large and is su�ciently pre-
dictable (that is, DMA can be issued before data is
needed).

Load/store architecture to support
e�cient static random access mem-
ory (SRAM) design

The SPU ISA microarchitecture is organized to enable
e�cient implementations that use single-ported (local
storage) memory.

Large uni�ed register �le The 128-entry register �le in the SPU architecture
allows for deeply pipelined high-frequency implemen-
tations without requiring register renaming to avoid
register starvation. This is especially important when
latencies are covered by software loop unrolling or
other interleaving techniques. Rename hardware typ-
ically consumes a signi�cant fraction of the area and
power in modern high-frequency general-purpose pro-
cessors.

ISA support to eliminate branches The SPU ISA de�nes compare instructions to set
masks that can be used in three operand select in-
structions to create e�cient conditional assignments.
Such conditional assignments can be used to avoid
di�cult-to-predict branches.

Table 1.1 � Key Features of the SPU ISA Architecture and Implementation [11].

13

Even pipeline instructions Latency
(clocks)

Single precision �oating point operations 6
Double precision �oating point operations 6+7
Integer multiplication 7
Integer/�oat conversion
Interpolate estimate
Immediate load 2
Logical operation
Integer addition/subtraction
Sign extend
Count leading zero
Select bits
Carry/borrow generate
Element rotates and shifts 4
Special byte operations

Table 1.2 � Instructions for the even pipeline.

16-bit multiplies and two adds to accumulate partial products. For single precision �oat-

ing point SPU only implements a subset of IEEE-754. The decision to no support full

IEEE compliance was driven by the expected target applications of the hardware, for

which features such as multiple rounding modes and IEEE-compliant exceptions where

not deemed important. The full list of incompatibilities is available in section 9.1 for

single precision and 9.2 for double precision of the SPU ISA speci�cation [11]. The list of

noncompliances with IEEE-754 for single precision arithmetics includes :

� the only supported rounding mode is truncation towards zero

� IEEE Inf and Nan are not recognizer by arithmetic operations

� there is no support for denormal numbers (denormal numbers are �ushed to 0)

� over�ows produce saturated results instead of +/-Inf

Instead of writing optimized assembly code or relying on the capabilities of the com-

piler to maximize the performance, the developer can take advantage of the language

extensions provided by the SPU C/C++ compiler [9]. These extensions give program-

mers nearly full access to SPU assembly language instructions. To ease writing SIMD code

the SPU C/C++ compiler also includes the vector keyword to describe a 128 bit vector

of given type. For example vector float will declare a 128 bit vector containing four

32 bit single precision �oating point numbers. Also the compiler provides a wide range of

intrinsics and built-ins that allow developers to access the underlying hardware instruc-

tions from the C programming language. To use the SPU intrinsics spu_intrinsics.h

must be included at the beginning of the code. Instructions that di�er only by the data

type of the operand are represented by a single C/C++ intrinsic, which selects the proper

assembly language instruction according to the operand data type. For example spu_add

when given two arguments of vector unsigned ints will map to 32-bit add instruction

a, when given two vector floats will generate a �oating point add instruction fa.

Some of the more common SPU intrinsics (roughly base on the list presented in [5]) :

14

Odd pipeline instructions Latency
(clocks)

Loads and stores 6
Branch hints
Channel operations
Moves to/from SPRs
Shu�e bytes 4
Quad-word rotates and shifts
Estimate (reciprocal, reciprocal sqrt)
Gather bits
Form select mask
Generate insertion control
Branches

Table 1.3 � Instructions for the odd pipeline.

� spu_add(val1, val2)

Adds each element of val1 to the corresponding element of val2. If val2 is a non-

vector value, it adds the value to each element of val1. For integer vectors this

intrinsic does not detect over�ows.

� spu_sub(val1, val2)

Subtract each element of val2 from the corresponding element of val1. If val1

is a non-vector value, then val1 is replicated across a vector, and then val2 is

subtracted from it. Similarly to spu_add this intrinsic does not detect over�ows.

� spu_mul(val1, val2)

Because the multiplication instructions operate so di�erently, the SPU intrinsics do

not coalesce them as much as they do for other operations. spu_mul handles �oating

point multiplication (single and double precision). The result is a vector where

each element is the result of multiplying the corresponding elements of val1 and

val2 together. To multiply integers one can use spu_mulh, spu_mule, spu_mulo,

spu_mulsr intrinsics. All of these operate slightly di�erently, depending on the

situation, one may need to execute multiple integer multiplication instructions and

later combine their return values to get the �nal result.

� spu_madd(val1, val2, val3)

Each element of val1 is multiplied to the corresponding element of val2 and added

to the corresponding element of val3. Besides �oating point vectors this intrinsic

can also be used if val1 and val2 are vectors of 16-bit integers and val3 is a vector

of 32-bit integers. For integer vectors the odd elements of vectors val1 and val2

are sign extended to 32-bit integers prior to multiplication.

� spu_msub(val1, val2, val3)

Each element of val1 is multiplied to the corresponding element of val2 and the

corresponding element of val3 is subtracted from the product. This intrinsic only

works with �oating point vectors.

� spu_nmsub(val1, val2, val3)

Each element of val1 is multiplied to the corresponding element of val2. The result

15

is subtracted from the corresponding element of val3. This intrinsic only works with

�oating point vectors.

� spu_extract(val, element)

The element of the vector val that is speci�ed by the element is extracted from

the given vector.

� spu_insert(val1, val2, element)

Scalar value val1 is inserted into an element of the vector val2 speci�ed by the

element.

� spu_promote(val, element)

Scalar value val is promoted to an vector that contains val in the element speci�ed

by the element.

� spu_splats(val)

Scalar value val is replicated across all the elements of the vector.

� spu_and(val1, val2), spu_or(val1, val2), spu_not(val), spu_xor(val1, val2),

spu_nor(val1, val2), spu_nand(val1, val2), spu_eqv(val1, val2)

Boolean operations operate bit-by-bit, so the type of operands the boolean oper-

ations receive is not relevant except for determining the type of value they will

return. spu_eqv is a bitwise equivalency operation, not a per-element equivalency

operation.

� spu_rl(val, count), spu_sl(val, count)

spu_rl rotates each element of val left by the number of bits speci�ed in the

corresponding element of count. Bits rotated o� the end are rotated back in on the

right. If count is a scalar value, then it is used as the count for all the elements of

val. spu_sl operates the same way, but performs a shift instead of a rotate.

� spu_rlmask(val, count), spu_rlmaska(val, count), spu_rlmaskqw(val, count),

spu_rlmaskqwbyte(val, count)

Although these operators are named "rotate left and mask" they are actually per-

forming right shifts (they are implemented by a combination of left shifts and

masks, but the programming interface is for right shifts). Both spu_rlmask and

spu_rlmaska shift each element of val to the right by the number of bits in the corre-

sponding element of count (or the value of count if count is a scalar). spu_rlmaska

replicates the sign bit as bits are shifted in. spu_rlmaskqw operates on the whole

quadword at a time, but only up to 7 bits (it performs a modulus on count to put it

in the proper range). spu_rlmaskqwbyte works similarly, except that count is the

number of bytes instead of bits, and count is modulus 16 instead of 8.

� spu_cmpgt(val1, val2), spu_cmpeq(val1, val2)

These instructions perform element-by-element comparisons of their two operands.

The results are stored as all ones (for true) and all zeros (for false) in the resulting

vector in the corresponding element. spu_cmpgt performs a greater-than comparison

while spu_cmpeq performs an equality comparison.

� spu_sel(val1, val2, conditional)

This corresponds to the selb assembly language instruction. The instruction itself

is bit-based, so all types use the same underlying instruction. However, the intrinsic

operation returns a value of the same type as the operands. As in assembly language,

16

spu_sel looks at each bit in conditional. If the bit is zero, the corresponding bit

in the result is selected from the corresponding bit in val1 ; otherwise it is selected

from the corresponding bit in val2.

� spu_shuffle(val1, val2, pattern)

This instruction allows rearranging bytes in val1 and val2 according to a pattern

that is speci�ed in pattern. The instruction goes through each byte in pattern,

and if the byte starts with the bits 0b10, the corresponding byte in the result is

set to 0x00 ; if the byte starts with the bits 0b110, the corresponding byte in the

result is set to 0xff ; if the byte starts with the bits 0b111, the corresponding byte

in the result is set to 0x80. Finally if none of the previous is true, last �ve bits of

the pattern byte are used to choose which byte from val1 or val2 should be taken

as the value for the current byte. The two values are concatenated, and the �ve-bit

value is used as the byte index of the concatenated value. This is used for inserting

elements into vectors as well as performing fast table lookups.

In addition if the developer needs even more �ne grained control it is possible to use a

speci�c assembly language instruction with speci�c intrinsics. All speci�c intrinsics are of

form si_assemblylanguageinstructionname where assemblylanguageinstructionname

denotes the name of the instruction in SPU assembly language. For example si_a corre-

sponds to the 32-bit integer add instruction a.

1.5 The Memory Subsystem

The integrated memory interface controller (MIC) connects the system memory to

the rest of the chip. On Sony PlayStation 3 256 MiB of RAMBUS eXtreme Data Rate

Dynamic Random Access Memory (XDR DRAM) is used. The access to memory is

provided through two XIO channels that operate at 3.2 GHz. Both RAMBUS channels

can have eight concurrently operating banks. The CBEAmemory subsystem has 16 banks,

interleaved on cache line boundaries (on CBEA the cache line size is 128 bytes). Addresses

2 KiB apart access the same bank. System memory throughput is maximized if all memory

banks are uniformly accessed.

With both XIO channels operating at 3.2 GHz, the peak raw memory bandwidth

is 25.6 GiB/s. However, normal memory operations such as refresh, scrubbing, and so

on, typically reduce the bandwidth by about 1 GiB/s. The peak bandwidth assumes

that all the banks are kept active all the time by the incoming request streams, and

requests are all of the same type (read or write), and each is exactly 128 bytes in size.

If streaming reads and writes are intermingled, the e�ective bandwidth can be reduced

to about 21 GiB/s ; the bandwidth loss in this case arises from the overhead of turning

around the MIC-to-XIO bidirectional bus [6].

The CBEA supports three concurrent memory page sizes - 4 KiB and any two of

64 KiB, 1 MiB, or 16 MiB. For maximum memory throughput it is advisable to allocate

large data sets from large pages. Using larger pages helps to reduce Translation Lookaside

Bu�er (TLB) miss penalties. TLB is a cache used to improve the speed of virtual address

translation. It has a �xed number of entries that translate virtual addresses into physical

17

addresses. If a virtual address is not in the TLB then external memory must be accessed

to �nd the needed address information. With larger pages there is a bigger chance that

the needed page is already present in TLB and thus no extra lookups are necessary for

address translation.

1.6 The Element Interconnect Bus

Communication between the SPEs, PPE, external I/O devices and the system main

memory goes through the Element Interconnect Bus (EIB) [14, 17]. As EIB interconnects

all the processing elements and the system memory, the main design goals of the EIB

where to provide a bus with enough throughput to satisfy the needs of all the units on

the bus.

The EIB consists of a address bus and four 16 byte wide data rings. Two of these rings

run clockwise and the other two counter-clockwise. Each of these rings can support up to

three concurrent data transfers as long as their paths do not overlap. Scheduling of the

transfers is handled by the EIB data bus arbiter. The arbiter selects on of the two rings

that travel in the direction of the shortest transfer path. This ensures that the data will not

need to travel more than halfway around the ring to reach its destination. The arbiter also

makes sure that the transfers will not interfere with other in-�ight transactions. The EIB

operates at the half of the processors frequency and its maximum theoretical bandwidth

is 204.8 GiB/s.

The actual bandwidth achieved on the EIB ranges from 78 to 197 GiB/s (see Table 1.4)

and depends on several factors, including the position of the source and destination units,

the chance of a new transfer interfering with the transfers in progress, the number of Cell

chips in the system, whether data transfers are to or from memory or between local stores

in the SPEs, and the data arbiter's e�ciency.

Reduced bus bandwidths can result in the following cases :

� All requestors access the same destination, such as the same local store, at the same

time.

� All transfers are in the same direction and cause idling on two of the four data

rings.

� A large number of partial cache line transfers lowers bus e�ciency.

� All transfers must travel halfway around the ring to reach their destinations, in-

hibiting units on the way from using the same ring.

1.7 Computing performance

Operating at 3.2 GHz each SPE has a theoretical peak of 25.6 GFLOPS for single

precision �oating point operations. This level of performance can be attained only if an

instruction that produces two �oating point operations per vector element is used. An

example of such an instruction is the fused multiply add which computes d = a∗b+c. On
SPE the intrinsic that corresponds to this instruction is spu_madd. The 25.6 GFLOPS

comes from the following formula 3.2 ∗ 4 ∗ 2 = 25.6 where 3.2 is the operating frequency

18

Test con�guration Aggregate EIB bandwidth

SPE1 <-> SPE3, SPE5 <-> SPE7 186 GiB/s
SPE0 <-> SPE2, SPE4 <-> SPE6
SPE0 <-> SPE4, SPE1 <-> SPE5 197 GiB/s
SPE2 <-> SPE6, SPE3 <-> SPE7
SPE0 <-> SPE1, SPE2 <-> SPE3 197 GiB/s
SPE4 <-> SPE5, SPE6 <-> SPE7
SPE0 <-> SPE3, SPE1 <-> SPE2 197 GiB/s
SPE4 <-> SPE7, SPE5 <-> SPE6
SPE0 <-> SPE7, SPE1 <-> SPE6 78 GiB/s
SPE2 <-> SPE5, SPE3 <-> SPE4
SPE0 <-> SPE5, SPE1 <-> SPE4 95 GiB/s
SPE2 <-> SPE7, SPE3 <-> SPE6
SPE0 <-> SPE6, SPE1 <-> SPE7 197 GiB/s
SPE2 <-> SPE4, SPE3 <-> SPE5

Table 1.4 � Sustained EIB bandwidth achieved for some SPE-to-SPE DMA transfers.

of the SPE, 4 is the number of vector components, and 2 is the number of �ops produced

for each vector component. Similarly for operations that do one �oating point operation

per vector element, such as multiplication (spu_mul) and addition (spu_add), the peak

is 3.2 ∗ 4 = 12.8 GFLOPS.

For double precision �oating point the SPE used in the Sony PlayStation 3 has a

theoretical peak of 1.83 GFLOPS. Each double precision operation takes 13 cycles to

complete and can be issued every 7 cycles. This is because, unlike the single precision

instructions, the double precision instructions are not fully pipelined on the SPE. After

issuing a double precision instruction there is a 6 cycle stall, during which no other

instruction can be issued. A double precision instruction does a maximum of 4 FLOPS

(fused multiply add on a vector containing 2 doubles). For this 3.2/7∗ 4 ∼ 1.83 GFLOPS

(round the �rst division 6 places after decimal because of the GHz). For real world

applications this level of performance may be out of reach because no other instruction can

be issued at the same cycle as a double precision instruction and for the next 6 cycles. This

gives a e�ective 7 cycle stall during which no other instruction can be issued. Therefore,

if a double precision instruction is issued immediately after the stall of the previously

issued instruction ends there is no room for load/store as a new stall begins. Assuming

that we will need to perform one load and one store for each arithmetic operation then

we will get that a double precision can be issued every 9 cycles, this gives us roughly

1.42 GFLOPS. For newer generation Cell processors, that have fully pipelined double

precision arithmetics, the theoretical peak is 3.2 ∗ 2 ∗ 2 = 12.8 GFLOPS per SPE.

Clocked at 3.2 GHz, the PPE can theoretically deliver 3.2∗2 = 6.4 GFLOPS of double

precision �oating point performance from its fully pipelined �oating point unit using the

fused multiply add operation. It can also deliver 3.2 ∗ 4 ∗ 2 = 25.6 GFLOPS of single

precision �oating point performance from its VMX unit using 4-way SIMD fused multiply

add operation. Although the PPE looks like quite a potent processor, its main purpose is

still to serve as a controller and supervise the work of the other cores on the chip. Thanks

19

PPE

SPE SPE SPE

Figure 1.4 � Multistage pipeline.

to the PPE's compliance with the PowerPC architecture, existing applications can run

on the Cell out of the box, and be gradually optimized for performance using the SPEs,

rather than written from scratch.

1.8 Programming model

While Cell o�ers huge potential for computing performance, it does not come free.

Just recompiling existing applications for Cell will not magically make them run faster,

as the recompiled code will only run on the PPE, but the bulk of the Cell's performance

is provided by the SPEs. To make full use of the Cell's computing power the application

has to be partitioned across the processing elements. For this there are two main ways :

the PPE-centric and the SPE-centric.

In the PPE-centric model, the main application runs on the PPE, and individual

tasks are o�-loaded to the SPEs. This approach is suitable for most of the applications,

as only performance critical parts need to be implemented on the SPE and most of the

application control logic can be left unchanged. The PPE will coordinate the work by

dispatching the tasks to SPEs and collect the results after the tasks have completed.

There are three ways in which the SPEs can be used in the PPE-centric model :

Multistage pipeline model (Figure 1.4). If a task requires sequential stages, the

SPEs can act as a multistage pipeline. Di�erent program is loaded into each of the SPEs

and the SPEs are chained together so that data is passed through them sequentially. The

stream of data is sent from the system main memory to the �rst SPE, which performs the

�rst stage of the processing. The �rst SPE then passes the data to the next SPE for the

next stage of processing. After the last SPE has done the �nal stage of processing on its

data, that data is returned to the system main memory. As with any pipeline architecture

parallel processing occurs with having various portions of data in di�erent stages of being

processed. This approach is well suited if processing the data can be divided into multiple

steps that can be performed in serial order. As the available bandwidth between the SPEs

is much larger than the bandwidth between the system main memory and the SPEs,

avoiding transferring the same data to and from the main memory is likely to result in a

20

PPE

SPE

SPE

SPE

Figure 1.5 � Parallel stages model.

PPE

SPE 1
AUDIO

SPE 2
VIDEO

SPE 3
CRYPTO

Figure 1.6 � Services model.

21

performance boost. As a downside, to keep all of the pipeline busy the processing stages

should be of roughly the same size. Dividing the processing algorithm in such a way may

be a di�cult task.

Parallel stages model (Figure 1.5). If a task has a large amount of data that can

be partitioned and acted on at the same time, then SPEs can be used to process di�erent

portions of that data in parallel. Here, the same program is loaded into each of the SPEs

and the data is divided evenly between them. This approach is suitable for data-parallel

problems. Partitioning data into chunks of roughly equal size is usually a lot simpler

than dividing the processing stages so that they would take about the same amount of

time, therefore, using this method is generally easier than constructing a pipeline from

the SPEs.

Services model (Figure 1.6). The third way in which SPEs can be used in a PPE-

centric paradigm is the services model. In the services model, the PPE assigns di�erent

services to di�erent SPEs, and the PPE's main process calls upon the appropriate SPE

when a particular service is needed. This approach is suitable if the SPEs are only used

to accelerate some speci�c tasks, for example encryption or decoding a video stream.

� In the SPE-centric model, most of the application code is distributed among the SPEs.

The PPE acts as a centralized resource manager for the SPEs. The PPE may provide

some services to the SPE code that can not be implemented on the SPE. Each SPE

fetches its next work item (what function to execute, data to use etc.) from main storage

(or its own local store) when it completes its current work.

The Cell processor allows for multiple di�erent programming models, each with their

own pros and cons. Application developers should choose carefully to �nd the model that

matches their needs. For existing application using the PPE-centric models let developers

leave most of their program structure intact and only port a small part of the functionality

that would bene�t the most from the extra computation power provided by the SPEs.

Applications built speci�cally for the Cell architecture from the ground up can leverage

both programming models to maximize their performance.

22

Chapitre 2

Conjugate gradient method

In this chapter I am going to give a brief overview of the Conjugate Gradient (CG)

method. For a complete description of the method refer to Jonathan Richard Shewchuk's

paper titled An Introduction to the Conjugate Gradient Method Without the Agonizing

Pain [21].

CG is an iterative numerical method for solving systems of linear equations. The

system is represented by the formula

Ax = b

where A is the system matrix, b is a known vector called the right hand side (RHS) vector,

x is the vector of unknowns that represents the sought solution. For the CG algorithm to

work the matrix A must be square, symmetric (AT = A) and positive de�nite (xTAx > 0

for every non-zero vector x).

The quadratic form is described by the equation

f(x) =
1

2
xTAx− bTx+ c

where A is a matrix, x and b are vectors, and c is a scalar constant. If A is symmetric

and positive de�nite then f(x) is minimized by the solution to Ax = b. The gradient of

the quadratic form is de�ned to be

f ′(x) =

∂

∂x1
f(x)

∂
∂x2
f(x)
...

∂
∂xn

f(x)

The gradient points to the greatest increase of f(x) for every point x. The solution of

the f(x) is minimized at the point where the gradient is is zero (f ′(x) = 0). From the

previous equations one can derive

f ′(x) =
1

2
ATx+

1

2
Ax− b

23

In case A is symmetric this can be reduced to

f ′(x) = Ax− b

Setting gradient to zero in the last equation yields Ax = b which is the formula for the

initial linear system. Hence, the solution to Ax = b is a critical point of f(x). In case of

a symmetric and positive de�ne matrix this is the minimum of f(x).

The idea of the CG is to �nd the minimum of f(x) instead of solving the linear system

Ax = b. To do this the CG algorithm starts with a initial guess x0 and gradually on each

iteration moves closer to the solution. The main improvement of CG over the similar

Steepest Descent [21] method is in the faster convergence, which is achieved by better

correction of the guessed solution on each iteration of the algorithm.

The starting condition can be a rough estimate of the solution. If there is no estimation

available the zero vector will also do as CG will eventually converge to the solution of the

system. The ending condition of the CG algorithm is when the convergence is complete

and the exact result is found, but due to the rounding errors CG implementations usually

stop when the residual falls below a speci�ed value. The conjugate gradient method in

pseudocode appears in Algorithm 2.1.

Iterative methods like CG are well-suited for use with sparse matrices. For dense

matrices solvers based on factoring the matrix are able to quickly solve the system for

di�erent values once the factorization is found. In case of a sparse matrix the triangular

matrices produced while factoring may contain a lot more non-zero elements than the

initial matrix. Due to the increased memory usage the factoring may be impossible or

very time consuming. Iterative methods on the other hand are memory e�cient with

spares matrices and run quickly.

2.1 Practical uses of the conjugate gradient method

CG can be used to solve a wide variety of practical problems that require solving

sparse systems of linear equations. For example many of the engineering problems contain

partial di�erential equations that are numerically solved through linear systems. One of

the problems that can be solved by CG is the steady-state heat equation. This equation

deals with the problem where we have a physical system with a mix of materials, heat

sources and heat sinks and we want to know the temperature of di�erent parts of the

system when the system has stabilized. The steady-state heat equation is a second order

partial di�erential equation

−k∇2T = f

where

� ∇ is nabla operator, 3 dimensional case ∇ = i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

where i, j, k are unit

basis vectors

� k is a material speci�c quantity depending on the thermal conductivity, the density

and the heat capacity

� T is a temperature function

24

� f is a heat source and sink function

Algorithm 2.1 The conjugate gradient algorithm in pseudocode.
1: A : matrix of linear equation system
2: b : know right hand side vector
3: x : initial guess
4: if initial guess is a zero vector then r := b
5: r := b− A · x
6: p := r
7: k := 0
8: while k < maximumnumber of iterations
9: d := A · p

10: dr := r · r
11: α := dr

d·p
12: xn := x+ α · p
13: rn := r − α · d
14: drn := rn · rn
15: if drn < acceptable precision
16: soultion found after k iterations
17: return xn
18: β := drn

dr

19: pn := rn+ β · p
20: k := k + 1
21: x := xn
22: r := rn
23: p := pn

25

Chapitre 3

Programming conjugate gradient

This chapter will introduce a C language implementation along with the necessary

data structures for the conjugate gradient method that was described previously. Besides

the implementation of the conjugate gradient method there will also be some discussion

about sparse matrix formats and parallelizing the conjugate gradient method.

3.1 Matrix representation

The linear equation system that is solved by the conjugate gradient method can be

very large, even so large that storing the entire system matrix in memory is impossible.

Fortunately the system matrix is usually a sparse matrix. A matrix is called sparse if

it mostly contains zeroes. Therefore, instead of storing all of the values in the matrix

as an array it is practical to store only the non-zero values of the matrix. As most of

the values in the matrix are zeros this will consume a lot less memory and also increase

computational e�ciency by avoiding doing computations on the zeros. One way is to

encode the non-zero values of the matrix as an array of triplets (i, j, v) where

� i is the row number

� j the column number

� v the value at the speci�ed matrix position

Depending on whether the matrix values are ordered �rstly by the row and then column or

vice versa, this is either called the row-major or the column-major format. For symmetric

matrices, it is su�cient to only store the upper or lower triangular half of the matrix.

Therefore, the following matrix
1 2 0 0

0 3 4 0

0 0 5 6

0 0 0 7

in row-major format is represented by

(1, 1, 1), (1, 2, 2), (2, 2, 3), (2, 3, 4), (3, 3, 5), (3, 4, 6), (4, 4, 7)

26

Similarly in column-major format by

(1, 1, 1), (2, 1, 2), (2, 2, 3), (3, 2, 4), (3, 3, 5), (4, 3, 6), (4, 4, 7)

Instead of triplets the matrix could also be described with three arrays, each containing

values of one triplet component.

Alternatively in the compressed row storage format [4] the matrix is represented by

three arrays. All the non-zero values of the matrix are placed in the �rst array named

values. The second array named row_start contains the start index of each row in

the �rst array. The third array named coulmn_indices holds the column index of each

matrix element. For the same matrix as used previously we get values := (1, 2, 3, 4, 5, 6, 7),

row_start := (1, 3, 5, 7) and colum_indices := (1, 2, 2, 3, 3, 4, 4)

3.2 Basic operations

Besides computations with scalar values the CG algorithm contains vector-vector and

matrix-vector operations. Implementation of these is relatively straightforward. Given the

following data structures

1 typedef struct {

2 unsigned int x ;

3 unsigned int y ;

4 double value ;

5 } sparse_matrix_el_t ;

6 typedef struct {

7 sparse_matrix_el_t ∗data ;
8 unsigned int s i z e ;

9 } sparse_matrix_t ;

10 typedef struct {

11 double ∗data ;
12 unsigned int s i z e ;

13 } vector_t ;

the operations necessary for the CG algorithm can be implemented as follows :

� vector-scalar multiplication

1 void mult ip ly (vector_t∗ r e su l t , double k , const vector_t∗ a) {

2 for (unsigned int i = 0 ; i < a−>s i z e ; ++i) {

3 r e su l t−>data [i] = k ∗ a−>data [i] ;
4 }

5 }

� inner product of two vectors

1 double dot (const vector_t∗ a , const vector_t∗ b) {

2 double sum = 0 ;

3 for (unsigned int i = 0 ; i < a−>s i z e ; ++i) {

27

4 sum += a−>data [i] ∗ b−>data [i] ;
5 }

6 return sum ;

7 }

� vector-vector addition

1 void add (vector_t∗ r e su l t , const vector_t∗ a ,

2 const vector_t∗ b) {

3 for (unsigned int i = 0 ; i < a−>s i z e ; ++i) {

4 r e su l t−>data [i] = a−>data [i] + b−>data [i] ;
5 }

6 }

� vector-vector subtraction

1 void sub (vector_t∗ r e su l t , const vector_t∗ a ,

2 const vector_t∗ b) {

3 for (unsigned int i = 0 ; i < a−>s i z e ; ++i) {

4 r e su l t−>data [i] = a−>data [i] − b−>data [i] ;
5 }

6 }

� matrix-vector multiplication

1 void mult ip ly (vector_t ∗ r e su l t , const sparse_matrix_t ∗smat ,

2 const vector_t ∗vec) {

3 unsigned int j = 0 ;

4 for (unsigned int i = 0 ; i < r e su l t−>s i z e ; i++) {

5 double sum = 0 ;

6 while (j < smat−>s i z e && smat−>data [j] . y == i) {

7 sum += smat−>data [j] . va lue
8 ∗ vec−>data [smat−>data [j] . x] ;
9 j++;

10 }

11 r e su l t−>data [i] = sum ;

12 }

13 }

3.3 Implementation of the Conjugate Gradient algo-

rithm

Using the data structures and primitive operations presented in the previous section

the conjugate gradient algorithm can be implemented in the following way :

1 int cg (vector_t∗ r e su l t , const sparse_matrix_t ∗A,
2 const vector_t ∗b , const vector_t ∗x0 ,

28

3 double p r e c i s i on , unsigned int i t e r a t i o n s) {

4 // # Sta r t wi th i n i t i a l guess x0

5 vector_t ∗x = clone_vector (x , x0) ;

6 // # r := b − A ∗ x

7 vector_t ∗tmp1 = mult ip ly (A, x) ;

8 vector_t ∗ r = sub (b , tmp1) ;

9 f r e e_vecto r (tmp1) ;

10 // # p := r

11 vector_t ∗p = new_vector (r−>s i z e) ;

12 copy_vector (p , r) ;

13 // # I t e r a t i o n counter

14 int k = 0 ;

15 vector_t ∗xn = new_vector (r−>s i z e) ;

16 vector_t ∗d = new_vector (r−>s i z e) ;

17 vector_t ∗ rn = new_vector (r−>s i z e) ;

18 vector_t ∗pn = new_vector (r−>s i z e) ;

19 while (k < i t e r a t i o n s) {

20 mult ip ly (d , A, p) ;

21 double dr = dot (r , r) ;

22 // # r ∗ r

23 // # alpha = −−−−−−−−−
24 // # p ∗ A ∗ p

25 double alpha = dr / dot (d , p) ;

26 // # xn = x + alpha ∗p
27 mult ip ly (xn , alpha , p) ;

28 add (xn , xn , x) ;

29 // # rn = r − a lpha ∗ dot (A, p)
30 mult ip ly (rn , alpha , d) ;

31 sub (rn , r , rn) ;

32 // # I f a c c ep t a b l e p r e c i s i on i s reached f i n i s h

33 double drn = dot (rn , rn) ;

34 i f (drn < p r e c i s i o n) {

35 swap_vector (x , xn) ;

36 break ;

37 }

38 // # rn ∗ rn

39 // # be ta = −−−−−−−
40 // # r ∗ r

41 double beta = drn / dr ;

42 // # pn = rn + be ta ∗p
43 mult ip ly (pn , beta , p) ;

44 add (pn , rn , pn) ;

45 k++;

46 swap_vector (x , xn) ; swap_vector (r , rn) ; swap_vector (p , pn) ;

29

47 }

48 // # Copy the r e s u l t

49 copy_vector (r e su l t , x) ;

50

51 f r ee_vecto r (d) ;

52 f r ee_vecto r (xn) ; f r e e_vecto r (rn) ; f r e e_vecto r (pn) ;

53 f r ee_vecto r (x) ; f r e e_vecto r (r) ; f r e e_vecto r (p) ;

54 // # Return the number o f i t e r a t i o n s performed

55 return k ;

56 }

3.4 Parallelization

The time-consuming parts of the conjugate gradient method are

� inner products

� vector updates (addition, subtraction and multiplication with scalar)

� matrix-vector product

Out of these the vector update operations can easily be parallelized by dividing the vectors

to segments and letting each processor do the update only on the segment assigned to it.

Inner products can be parallelized in a similar fashion by letting each processor compute

the product for its assigned segment. When processors have completed computing on

their segment the results would be collected and summed to get the �nal result. The

summing of the partial results introduces a synchronization point where all processors

have to wait for the �nal result before they can proceed with the computation. Variations

of the conjugate gradient method [4, 12] have been proposed that allow for overlapping

the communication needed for inner product with subsequent operations.

On shared memory machines the matrix-vector product can be parallelized, similarly

to the vector update operations, by letting each processor handle a segment of the re-

sult vector. For distributed-memory machines the whole input vector would need to be

distributed to each of the processors, which can cause a large communication overhead.

However, many sparse matrix problems have a matrix where element aij is nonzero only

if i and j are close. In such a case, each processor may need input vector values only from

the processors computing on neighboring matrix blocks. If the number of needed values

is small then the computation can be overlapped with communication.

30

Chapitre 4

Implementing conjugate gradient on

the Cell

This chapter demonstrates how the CG algorithm can take advantage of the Cell

hardware. To accelerate CG on the Cell one way would be to implement the whole CG

algorithm on the SPEs. The matrix and the vectors used in the algorithm would need

to be divided into segments so that each SPE would get its own data range. This design

would be similar to a CG implementation on distributed memory machines only instead

of the Message Passing Interface (MPI), that is typically used for communication between

nodes, DMA between SPEs and PPE would be used. Similarly to the distributed memory

solution vector inner products would be a synchronization point where all SPEs have to

exchange data to reach the �nal result. The second approach would be to delegate the

time consuming parts of the algorithm to the SPEs. With this approach the main CG

algorithm would be implemented on the PPE while the computation intensive parts such

as :

� vector inner product

� inner product between two di�erent vectors

� inner product of one vector (so we wouldn't need to move the same vector twice

to SPEs)

� vector update operations

� multiply vector with scalar and add to another vector, uses spu_madd intrinsic

� multiply vector with scalar and subtract the result from another vector, uses

spu_nmsub intrinsic

� vector - sparse matrix product

would be implemented on the SPEs. These operations would split the computation be-

tween the SPEs and when all of the SPEs are done with their part the PPE could gather

the results and move on with the next operation. The implementation of all of these

functions follows roughly the same outline.

� On PPE

1. Submit work to each of the SPEs. Every SPE gets a separate data range to

compute on.

2. Wait while the SPEs complete their computations.

31

3. Post process the results from the SPEs. For example add together the vector

inner product results computed by the SPEs to get the �nal result.

� On SPE

1. Block and wait a noti�cation from the PPE to start working.

2. Transfer a small control structure from the main memory that is pre�lled by

the PPE with the details of the requested task, such as the operation type and

memory addresses of the input/output data.

3. Compute the result and DMA the result back to the system main memory.

4. Notify the PPE that work is done.

On the SPE side the general idea is to overlap computation with data transfer by using

double or multi bu�ering. This is needed due to the limited size of the local store, which

makes it impossible to have all the necessary data ready on the SPE. The bu�er size is

limited by the maximum size of the DMA transfer, which is 16 KiB. This means that

each bu�er can contain up to 2048 double precision �oating point values, or 1024 128-byte

quad-words. To make the SPE code simpler and more e�cient all the vectors should be

padded with zeros so that we could always compute on full blocks and would not need to

worry about �guring out whether the current block is a bit shorter than the other blocks

or not. The outline of the implemented operations follows.

Inner product between two di�erent vectors.

−− given source ve c t o r s a and b

i := 0

s t a r t t r a n s f e r o f the f i r s t b lock o f vec to r a to bu f f e r A[i]

s t a r t t r a n s f e r o f the f i r s t b lock o f vec to r b to bu f f e r B[i]

do

s t a r t t r a n s f e r o f the next block o f vec to r a to bu f f e r A[1− i]

s t a r t t r a n s f e r o f the next block o f vec to r b to bu f f e r B[1− i]

wait f o r b u f f e r s A[i] and B[i] to complete t r a n s f e r

compute on bu f f e r s A[i] and B[i]

i := 1 − i

while no more work

t r a n s f e r r e s u l t

wait f o r the r e s u l t to be t r a n s f e r r e d

Inner product of one vector. This is similar to the inner product between two dif-

ferent vectors case, the only di�erence is that there is only one source vector. Thus the

amount of data transferred is cut in half.

−− given source vec to r a

i := 0

s t a r t t r a n s f e r o f the f i r s t b lock o f vec to r a to bu f f e r A[i]

32

do

s t a r t t r a n s f e r o f the next block o f vec to r a to bu f f e r A[1− i]

wait f o r bu f f e r A[i] to complete t r a n s f e r

compute on bu f f e r A[i]

i := 1 − i

while no more work

t r a n s f e r r e s u l t

wait f o r the r e s u l t to be t r a n s f e r r e d

Multiply vector with scalar and add to another vector, multiply vector with

scalar and subtract the result from another vector.

−− given source ve c t o r s a and b and ta r g e t vec to r r e s u l t

i := 0

s t a r t t r a n s f e r o f the f i r s t b lock o f vec to r a to bu f f e r A[i]

s t a r t t r a n s f e r o f the f i r s t b lock o f vec to r b to bu f f e r B[i]

while no more work

s t a r t t r a n s f e r o f the next block o f vec to r a to bu f f e r A[1− i]

s t a r t t r a n s f e r o f the next block o f vec to r b to bu f f e r B[1− i]

wait f o r b u f f e r s A[i] , B[i] , C[1− i] to complete t r a n s f e r

compute on bu f f e r s A[i] and B[i] to C[1− i]

s t a r t t r a n s f e r o f the r e s u l t bu f f e r C[1− i]

i := 1 − i

wait f o r the r e s u l t to be t r a n s f e r r e d

Vector - sparse matrix product. The problem with implementing sparse matrix

multiplication on Cell is that at least some data used for computation has bad locality.

For example if we divide the output vector ranges between the SPEs similarly as done

before, then the matrix can be ordered so that each SPE also gets a non-overlapping

region of the matrix values, but each of the SPEs needs potentially all of the input vector

values (or at least it is likely that the values needed for the block we are computing

on come from di�erent parts of input vector). As the SPE local store size is limited to

256 KiB we cannot usually �t the whole input vector in the local store. At the worst

case we may even need to transfer some parts of the input vector multiple times to

complete the computation. Also we need to make sure that all the DMA alignment and

size requirements imposed by the hardware are met.

Assuming we have a spares matrix in row-major format there are two ways of rep-

resenting it. One way is to store the matrix as an array of triplets (row, column, value)

and the other one is to create three arrays one for row indices, the second one for column

indices and the third one for values. The �rst way is call array of structures (AOS) and

the second one structure of arrays (SOA). The SOA layout is usually a better �t for SIMD

computations as with this layout similar data is stored in memory contiguously, which

allows for computing on two consecutive matrix values simultaneously.

33

As the �rst step we will need to prepare the input matrix so that it would be easier

to compute on in parallel by the SPEs.

1. Add zeros to matrix so that each SPE could compute on full blocks. This means

that when we divide the output vector between SPEs, we take the last row index

computed by the �rst SPE and search the matrix for the last element on that row

and insert enough padding so that the next SPE would get it's �rst matrix block

on suitable boundary (DMA start addresses must be properly aligned).

2. To compute a block of output vector values we may need to transfer a lot more

matrix values (multiple blocks), therefore, the matrix blocks should be aligned with

the output vector blocks so that when computing of an output block is done we

could throw away the corresponding matrix elements. This is again achieved by

padding the matrix with zeros.

3. For each iteration make a copy of the input vector and arrange it so that we could

compute on it sequentially.

Now we could implement the SPE part in the following way :

foreach output block

t r a n s f e r input vec to r b lock

f o r each matrix block in cur r ent output vec to r b lock

t r a n s f e r matrix b lock

compute

t r a n s f e r output block

While this algorithm is rather simple it will not perform too well as rearranging the

input vector for each iteration has a rather big overhead, so we will need to get rid of

this.

As an alternative we could use DMA gather operation to fetch the input vector values

corresponding to the matrix values. In this case the biggest issue with the Cell DMA

gather is that the minimum size of a item is 16 bytes, which corresponds to two doubles.

In our case we only need one of them. Up to 2048 items can be transferred at a time.

foreach output vec to r b lock

foreach matrix block in cur r ent output vec to r b lock

t r a n s f e r matrix b lock

t r a n s f e r needed input vec to r va lue s v ia DMA l i s t

compute

t r a n s f e r output block

Now to make things more complicated on the SPE we need for each output vector

block :

1. Matrix values (may be multiple blocks)

2. Matrix row indices (which matrix value goes to which row in output vector)

3. For each matrix block we need

(a) values from input vector.

34

(b) as we can only get 16 bytes minimum aligned at 16 byte boundary we also need

to know if it was the low or high double-word we actually needed. Alternatively

we could add zeros between the matrix values so we could always assume

that two consecutive matrix values correspond to two consecutive input vector

values.

We can also use the fact that some input vector values are used multiple times during the

computation on a matrix block (or output vector block) and precompute what is needed

during initialization and cache them on the SPE, so that they would not be transfered

multiple times. This kind of initialziation and precomputation needs to be done once per

matrix. The worst case number of needed input vector values per matrix block is twice

the size of the matrix block (because we can only get two input vector values at a time),

but on average much less is needed.

−− given source matrix m and vec to r v and ta r g e t vec to r r e s u l t

i := 0

cur rent := 0

next := 1

f e t ch := 2

−− f e t ch matrix and imput vec to r va lue s

s t a r t t r a n s f e r o f the f i r s t b lock o f matrix to A[cur rent]

wait f o r bu f f e r A[cur rent] to complete t r a n s f e r

s t a r t t r a n s f e r o f vec to r va lue s f o r matrix in A[cur r ent]

s t a r t t r a n s f e r o f the next matrix block to A[next]

wait f o r bu f f e r A[next] and vec to r f o r A[cur rent]

s t a r t t r a n s f e r o f vec to r f o r matrix block in A[next]

s t a r t t r a n s f e r o f the next matrix block to A[f e t ch]

foreach output vec to r b lock

wait f o r bu f f e r C[i] to complete t r a n s f e r

foreach matrix block in cur r ent output vec to r b lock

compute on A[cur r ent] and C[i]

tmp := cur rent

cur r ent := next

next := f e t ch

f e t ch := tmp

wait f o r matrix in A[next_buf_nr] and vec to r in A[cur r ent]

s t a r t t r a n s f e r vec to r f o r matrix in A[next]

s t a r t t r a n s f e r o f the next matrix block to A[f e t ch]

s t a r t t r a n s f e r o f the r e s u l t bu f f e r C[i]

i := 1 − i

wait f o r the r e s u l t to be t r a n s f e r r e d

The biggest challenge in implementing vector-sparse matrix product is �nding a good

balance between data preparation and the SPE code complexity and speed. If the matrix

35

values are rearranged on each iteration the SPE computation can be fast and simple, but

the rearranging itself will be time consuming.

On the other hand if matrix is only prepared so that the SPE could always DMA

blocks of some �xed size then the SPE could potentially need input vector values from all

over the vector. This in turn can cause a lot of data transfer for the input vector values.

In this case data preparation is simple but the SPE code needs to do too much work to

�nd input vector values.

The third option is to use a DMA list to fetch the input vector values. With this

only the necessary input vector elements are fetched, but as the minimum transfer size

of a list element is two double precision �oating point numbers (16 bytes) instead of the

one double (8 bytes) that is need the inner loop of the computation needs to �gure out

which of the fetched doubles was actually needed. This in turn slows down the inner

loop. To improve the inner loop's performance by eliminating the expensive conditional

operations the matrix data can be further padded with zeros so that the inner loop could

assume that two consecutive input vector and matrix values can be multiplied by each

other in one SIMD operation. This allows for a simpler and faster inner loop at the cost

of increasing the size of the input matrix.

As a further improvement it is possible to precompute which input vector values are

needed at which computation stage and use as much of the SPE local store space that

is available as a cache. Without caching the number of transferred input vector elements

would depend on the number of the matrix values. With caching it is likely that only a

few vector elements will need to be transferred more than once.

The SPEs will only give optimal performance if data transfers can be overlapped with

computations. Therefore the inner loop should be fast enough to complete before the

data for the next computation is fetched from the main memory. Similarly the data size

should be small enough that the DMA transfers can complete before the data is needed for

computations. As the vector-sparse matrix product is the most time consuming operation

in the CG, the overall performance of the CG implementation will depend heavily on the

implementation of this operation.

36

Chapitre 5

Estimating conjugate gradient

performance on the Cell

This chapter gives an estimate on how fast the Cell implementation of the CG will

perform and compare it with the actual results. A common estimate of computer hard-

ware performance is Floating point Operations Per Second (FLOPS). Like many other

commonly used performance metrics such as frequency in GHz and Million of Instruc-

tions Per Second (MIPS) the FLOPS usually does not give a good overview of the actual

processor speed. While the theoretical peak FLOPS can be quite easily computed if the

processor frequency, clocks per instruction and number of parallel instructions are known,

the number of FLOPS attained by running real applications may be very di�erent. Be-

sides raw �oating point performance, the actual performance is also in�uenced by cache

misses, memory access latencies and other hard to model details. This makes estimat-

ing the performance of the algorithm without benchmarking complicate. In contrast to

most commonly used processor architectures Cell SPEs behave very predictably and are

capable of achieving near theoretical peak performance.

5.1 Flops and CG

To estimate the performance of the CG we will �rstly need to know the number of

FLOPS performed on each iteration of the method. On every iteration the CG algorithm

makes :

� one vector-sparse matrix product

� three vector inner products

� three vector-scalar multiplications

� two vector additions

� one vector subtraction

Given a vector of size n and a matrix with m non-zero elements these operations need :

� a vector-sparse matrix product needs roughly m multiplications and m additions

� a vector-vector dot product needs n multiplications and n− 1 additions

� a vector scalar multiplication needs n multiplications

� a vector addition needs n additions

37

� a vector subtraction needs n subtractions

This adds up to approximately

(m+m) + 3(n+ n− 1) + 3n+ 2n+ n = 2m+ 12n− 3 ≈ 2m+ 12n

�oating point operations on each iteration.

Secondly we will need to know if the operations performed in the CG algorithm are

bound by the data transfer or by the computation speed. As described previously, SPE

can issue one double precision instruction in 7 cycles so 3.2/7 ∼ 0.45, which means that a

SPE can execute 0.45× 109 double precision instructions per second. If we take that one

double precision instruction in 9 cycles then we get 3.2/9 ∼ 0.36. Assuming that the data

transfer rate is 25.6 GiB/s and 6 SPEs gives 25.6/6 ∼ 4.27 GiB/s of bandwidth per SPE.

25.6/6/8 ∼ 0.54, which means that we can move at most 0.54 × 109 doubles between

the main memory and the SPE in one second. Taking 21 GiB/s as the peak transfer

rate gives 21/6/8 ∼ 0.44. To estimate whether an operations is bound by the transfer or

computation we will need to compare the number of double precision instructions with

the number of double precision �oating point values transferred.

Vector inner products.

� inner product between two di�erent vectors

This operation needs two input vectors and has a single output value. Elements

are processed two at a time from both inputs. The number of double precision

instructions needed to process the data is 0.54/4 = 0.135. 0.135 < 0.45 which

means that this operation is bound by the data transfer speed.

� inner product of one vector

Only one input vector is needed, which gives us 0.54/2 = 0.27 < 0.45 double

precision instructions needed.

Vector update operations.

� multiply vector with scalar and add to another vector,

� multiply vector with scalar and subtract the result from another vector

Both of these operations have two input vectors and one output vector, which

gives us 0.54/3/2 = 0.09 < 0.45

Vector-sparse matrix product. Matrix has m elements, vector has n elements, trans-

fer overhead is t (we need to transfer matrix element coordinates too). From this

m+2n+t = 0.54. As we are doing two �oating point operations with each matrix el-

ement we get 2m/2 = 0.45 which givesm = 0.45 from this n+t = 0, 045. This means

that if transfer overhead is low and the size of the vector is considerably smaller than

the matrix, then this operation could be bound by the speed of the computation. In

my implementation the transfer overhead is at least t = m
4
+ m

32
= 0.45

4
+ 0,45

32
= 0, 127.

Thus we can assume that this operation is also bound by the data transfer.

As it turns out all the operations should be bound by data transfer rates. This is due to the

fact that the operations used usually do only one or two �oating point operations for each

value. While estimating the required bandwidth is relatively easy, accurate estimation of

instructions is a bit more di�cult as the �oating point instructions are not the only

38

instructions executed.

The inner loops of the computations should be arranged so that the overhead of

the non �oating point instructions is minimal (the ratio of �oating point instructions

to other instructions is large), there are no branch prediction misses, there are no data

dependencies between �oating point instructions and SIMD is used to compute on two

values simultaneously. Assuming that these conditions hold, then the expected GFLOPS

number for CG implementation on the SPE is determined by the data transfer rate.

Given a vector of size vs and a matrix with ms elements lets denote the vector size

after padding as pvs and the matrix size as pms, the number of input vector values used

on each iteration as ivs. Then the amount of data transferred on each iteration of CG

can be described with formula

ts = 14pvs+ pms+ ivs+ t

where t is transfer overhead, t is an implementation dependent quantity, which in my

version of CG is t = pms
4

+ pms
32

. Knowing the data size on each iteration we can estimate

the running time of CG with

rt = i× ts

tr

where rt is the running time, i the number of iterations and tr is the transfer rate. The

performance of the CG can now be represented by the formula

flops =
2ms+ 12vs

rt

where flops is the number of �oating point operations performed by CG in one second.

5.2 Actual and estimated performance

Besides the speed of the computation operations the actual performance attained is

also in�uenced by the ratio of useful to total work done. The wasted work arises from

padding the data with extra zeros that do not in�uence the end result but are still

used in computations. The observed performance may also be a�ected by uneven data

distribution to the SPEs where some SPEs recieve a larger data set and need more time

to complete their operations.

For testing I used matrix s3dkt3m2 obtained from the matrix market [2]. This matrix

originates from �nite element analysis on a cylindrical shell. The s3dkt3m2 matrix is a

symmetric positive de�nite matrix, which makes it suitable for CG. It has dimensions of

90499 by 90499 and contains 3753461 elements (including explicit zero elements present in

source data). The average number of non-zero elements in a row is 21.25. The right hand

side vector used in CG was obtained by multiplying the matrix with vector (1 . . . 1)T .

After padding the matrix contained 4051968 elements (8% growth), as the vector

was of suitable length no padding was necessary. The number of input vector elements

transferred on each iteration was 110576 (22% overhead). The estimated performance

�gures for running 10000 iterations of CG are brought out in Table 5.1.

39

Transfer rate (GiB/s) Expected time (s) Expected GFLOPS

10 48.9436388 1.75566717
18 27.19091045 3.160200912
19 25.7598099 3.33576763
20 24.4718194 3.51133435
21 23.30649467 3.68690107
22 22.24710855 3.86246778
25.6 19.11860891 4.49450796

Table 5.1 � Expected performance for 10000 iterations.

Time (s) MFLOPS e�ective MFLOPS done Transfer (GiB/s)

CG 857.530171 3631.458393 3884.019071 20.685565
on SPE 829.024153 3756.326187 4017.571172 21.396839
dot1 20.317253 6453.856791 6457.210407 23.740455
dot2 20.586428 3184.735051 3186.389935 23.740455
madd 77.681847 1687.970144 1688.847264 18.874339
nmsub 38.703142 1693.979248 1694.859490 18.941531

sparsemul 671.735483 4050.271704 4372.383605 21.677794

Table 5.2 � Actual performance for 362427 iterations, with huge pages.

The actual results were obtained by running CG for 362427 iterations. The test was

run with keeping data in large 16 MiB memory pages to maximize memory throughput.

Results of the test are presented in Table 5.2 . Table 5.3 shows the results for the same

test with normal 4 KiB memory pages. For comparison the expected performance �gures

for the same number of iterations can be viewed in Table 5.4 .

The total time in the results was measured by CPU clock for the whole CG algorithm,

time spent on reading the matrix from the disk and preparing data was not measured. The

time spent on the SPEs during various computations was measured using SPE hardware

timer facilities with spu_decrementer function. On PlayStation 3 the hardware timer

operates withe frequency of 79.8 MHz. spu_decrementer counts the number of ticks

elapsed while performing a certain operation, to get the actual time the number of ticks

is multiplied with the timer frequency.

As can be seen from the results about 97% of total time is spent on the SPEs, the

Time (s) MFLOPS e�ective MFLOPS done Transfer (GiB/s)

CG 945.692228 3292.916072 3521.931808 18.757156
on SPE 914.761040 3404.260786 3641.020325 19.391399
dot1 22.284961 5883.996836 5887.054337 20.401350
dot2 23.955825 2736.800715 2738.222839 20.401350
madd 80.660381 1625.638732 1626.483462 18.177369
nmsub 39.916310 1642.494496 1643.347985 18.365845

sparsemul 747.943563 3637.588922 3926.880793 19.469041

Table 5.3 � Actual performance for 362427 iterations, without huge pages.

40

Transfer rate (GiB/s) Expected time (s) Expected GFLOPS

10 1773.849618 1.755667174
18 985.47201 3.160200912
19 933.6050621 3.33576763
20 886.924809 3.511334347
21 844.6902943 3.686901065
22 806.2952809 3.862467782
25.6 692.910007 4.494507964

Table 5.4 � Expected performance for 362427 iterations.

remaining 3% is used on the PPE for running the algorithm's main loop and orchestrating

the work of the SPEs. By far the most time consuming operation is the vector-sparse

matrix product which accounts for 78% of the total execution time and 81% of the SPE

execution time. The vector-sparse matrix product is performed at a speed a bit over

4 GFLOPS. Although the matrix used for testing is not the same as used by Williams

et. al. in [24] the performance of vector-sparse matrix product is at a comparable level.

Computations on the SPE attain 84% of the theoretical peak due to the reduced data

transfer rates compared to the maximum of 25.6 GiB/s. Degraded data transfer rates can

be explained by the overhead of mixing streaming memory read and write operations,

which can reduce the attained throughput down to 21 GiB/s [6]. Further benchmark-

ing would be necessary to determine the maximum possible memory bandwidth for given

workload on PlayStation 3 hardware. In case we consider the maximum available through-

put to be 22 GiB/s then the computations operate at 97% from the peak. Using large

memory pages gives a roughly 10% boost over small 4 KiB pages. For the test matrix

useful work accounts for 94% of the total work done.

41

Conclusions

In the context of high performance computing the emergence of multi-core architec-

tures makes it important to understand the most e�ective designs to utilize these systems.

To harness the full power of these new architectures the code needs to be parallelized

across several forms of parallelism, ranging from data level SIMD parallelism to multi-

threading. In this paper I examined implementing conjugate gradient method, a popular

iterative solver for sparse linear systems, on Cell Broadband Engine, a novel heteroge-

neous multi-core processor architecture, that exploits the parallel execution capabilities

of the underlying hardware.

One of the most attractive features of the Cell processor is its simple architecture

that gives programmers full control over the processors functionality. On most common

processors performance depends heavily on the cache memories over whose behavior pro-

grammers have no directly control. The predictable nature of Cell gives programmers

better understanding of the bottlenecks in their code, which in turn makes it possible to

write highly e�cient applications. As a result Cell o�ers developers a straightforward and

easy to model development platform that allows real applications to attain performance

near the theoretical peak performance of the processor, much more than what can be

achieved on traditional cache based systems. However the high performance and the pre-

dictability comes at a cost. Implementing e�cient and fast code for the Cell processor is

a di�cult task, that forces programmers to constantly pay attention to such low level de-

tails as data alignment, data dependencies and branch prediction. For high performance

it is often necessary to write code using intrinsics which are on the border line between

high level languages and the assembly language. Unleashing the full potential of the Cell

requires a lot of e�ort, good knowledge of the underlying hardware and careful planning.

Without investing time into learning the peculiarities of the processor it is only possible

to release a small fraction of Cell's potential performance.

Despite the di�culties of programming Cell the proposed CG solver delivers good

performance, being mostly limited by the available memory bandwidth. For further work

it would be interesting to add a preconditioner [21] for faster convergence of the CG and

parallelize the computation over multiple PlayStation 3 machines.

42

Kaasgradientide meetodil

lineaarvõrrandisüsteemide lahendamine

PlayStation 3 mängukonsoolil

Magistritöö (30 EAP)

Lauri Tulmin

Kokkuvõte

Teadusarvutuste seisukohast on mitmetuumaliste protsessorite esilekerkimise ja jär-

jest laieneva levikuga muutunud oluliseks selliste süsteemide põhjalik uurimine. Uute mit-

metuumaliste protsessoritega arvutite võimalikult efektiivseks kasutamiseks on vaja pro-

grammid paralleliseerida mitmel tasemel, alustades andmeparalleelsusest ja vektorarvu-

tustes kuni mitmelõimelisuseni. Sony PlayStation 3 mängukonsool sisaldab endas uuen-

duslikku Cell protsessorit, kus ühe tavaprotsessoriga on seotud mitu piiratud võimalus-

tega, kuid suure arvutusvõimusega, eriotstarbelist vektorprotsessorit. Käesolevas mag-

istritöös uurisin lineaarvõrrandisüsteemide lahendamist kaasgradientide meetodil kasu-

tades PlayStation 3 mängukonsooli. Antud töö eesmärgiks oli realiseerida kaasgradientide

meetod viisil, mis võimaldaks maksimaalselt ära kasutada riistvara arvutusvõimsust.

Tänu uuenduslikule arhitektuurile on Cell protsessoril lisaks suurele arvutusvõim-

susele ka hästi ette ennustatav käitumine, mis lihtsustab programmide analüüsimist ja

nendest kitsaskohtade leidmist. Erinevalt enamikest tavaprotsessoritest on Cell protses-

soril töötavatel rakendustel võimalik jõuda väga lähedale teoreetiliselt maksimaalsele

võimalikule arvutusjõudlusele. Antud riistvaral on kõrge jõudluse ja etteaimatavuse hu-

vides ohverdatud lihtne programmeeritavus, seetõttu on efektiivsete programmide kirju-

tamiseks oluline süsteemi ülesehituse tundmaõppimine.

Käesolevas magistritöös antakse ülevaade PlayStation 3 mängukonsoolis kasutatavast

riistvarast ja kaasgradientide meetodil lineaarvõrrandisüsteemide lahendamiseks. Lisaks

kirjeldatakse topeltäpsusega ujukomaarve kasutavat kaasgradientide meetodi realisat-

siooni PlayStation 3 riistvarale ja tuuakse välja valminud programmi jõudlusnäitajad.

43

Bibliographie

[1] Amdahl's law - wikipedia, the free encyclopedia.

http ://en.wikipedia.org/wiki/Amdahl%27s_law. Last accessed in 2010.05.02.

[2] Matrix market. http ://math.nist.gov/MatrixMarket/. Last accessed in 2010.05.22.

[3] Gene M. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In Proceedings of the April 18-20, 1967, spring joint com-

puter conference on - AFIPS '67 (Spring), page 483, Atlantic City, New Jersey,

1967.

[4] Richard Barrett. Templates for the solution of linear systems : building blocks for

iterative methods. SIAM, Philadelphia, 1994.

[5] Jonathan Bartlett. Tech tips : SPU vector intrinsics at your �ngertips.

http ://www.ibm.com/developerworks/library/pa-tipspu1/index.html, May 2007.

Last accessed in 2010.05.21.

[6] Thomas Chen, Ram Raghavan, Jason Dale, and Eiji Iwata.

Cell broadband engine architecture and its �rst implementation.

http ://www.ibm.com/developerworks/power/library/pa-cellperf/, November

2005. Last accessed in 2010.05.02.

[7] International Business Machines Corporation. Data communication and synchroniza-

tion for cell BE programmer's guide and API reference, version 3.1. https ://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/EDEC4547DFD111FF00257353006BC64A,

October 2007. Last accessed in 2010.05.23.

[8] International Business Machines Corporation. SPE run-

time management library, version 2.2. https ://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/1DFEF31B3211112587257242007883F3,

October 2007. Last accessed in 2010.05.20.

[9] International Business Machines Corporation. C/C++ language exten-

sions for cell broadband engine architecture, version 2.6. https ://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/30B3520C93F437AB87257060006FFE5E,

August 2008. Last accessed in 2010.05.22.

[10] International Business Machines Corporation. IBM Full-

System simulator user's guide, version 3.1. https ://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/B494BF3165274F67002573530070049B,

May 2009. Last accessed in 2010.05.20.

44

[11] International Business Machines Corporation, Sony Computer En-

tertainment Incorporated, and Toshiba Corporation. Synergis-

tic processor unit instruction set architecture. https ://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/76CA6C7304210F3987257060006F2C44,

2007. Last accessed in 2010.05.22.

[12] James W. Demmel, Michael T. Heath, and Henk A. van der Vorst. Parallel numerical

linear algebra. Acta Numerica, 2 :111, 2008.

[13] Brad Frey. PowerPC architecture book, version 2.02.

http ://www.ibm.com/developerworks/systems/library/es-archguide-v2.html,

February 2005. Last accessed in 2010.05.08.

[14] M. Gschwind, H.P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Yamazaki.

Synergistic processing in cell's multicore architecture. IEEE Micro, 26(2) :10�24,

2006.

[15] Mark D. Hill and Michael R. Marty. Amdahl's law in the multicore era. Computer,

41(7) :33�38, 2008.

[16] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.

Introduction to the cell multiprocessor. IBM Journal of Research and Development,

49(4) :589�604, 2005.

[17] David Krolak. Unleashing the cell broadband engine processor : The element inter-

connect bus. https ://www.ibm.com/developerworks/library/pa-fpfeib/, November

2005. Last accessed in 2010.05.08.

[18] Toomas Laasik. A Conjugate Gradient Solver library for the PlayStation 3. Master's

thesis, University of Tartu, Tartu, 2010.

[19] Geo�rey Levand. Advanced cell programming.

http ://www.kernel.org/pub/linux/kernel/people/geo�/cell/ps3-linux-docs/ps3-

linux-docs-08.06.09/CellProgrammingTutorial/AdvancedCellProgramming.html.

Last accessed in 2010.05.20.

[20] Gordone E. Moore. Cramming more components onto integrated circuits. Electronics

Magazine, April 1965.

[21] J. R Shewchuk. An introduction to the conjugate gradient method without the ago-

nizing pain. 1994.

[22] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P.N. Strenski, and P.G.

Emma. Optimizing pipelines for power and performance. In 35th Annual IEEE/ACM

International Symposium on Microarchitecture, 2002. (MICRO-35). Proceedings.,

pages 333�344, Istanbul, Turkey, 2002.

[23] Vaidyanathan Srinivasan, Anand K. Santhanam, and Madhavan Srinivasan. Cell

broadband engine processor DMA engines, part 1 : The little engines that move

data. http ://www.ibm.com/developerworks/library/pa-celldmas/, December 2005.

Last accessed in 2010.05.02.

[24] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and

James Demmel. Optimization of sparse matrix-vector multiplication on emerging

45

multicore platforms. In Proceedings of the 2007 ACM/IEEE conference on Super-

computing - SC '07, page 1, Reno, Nevada, 2007.

[25] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall. ACM SIGARCH

Computer Architecture News, 23(1) :20�24, 1995.

46

	Introduction
	Cell broadband engine architecture
	The Power Processing Element
	The Synergistic Processing Element
	Communication between PPE and SPE
	DMA
	DMA lists
	Mailboxes

	The SPU instruction set
	The Memory Subsystem
	The Element Interconnect Bus
	Computing performance
	Programming model

	Conjugate gradient method
	Practical uses of the conjugate gradient method

	Programming conjugate gradient
	Matrix representation
	Basic operations
	Implementation of the Conjugate Gradient algorithm
	Parallelization

	Implementing conjugate gradient on the Cell
	Estimating conjugate gradient performance on the Cell
	Flops and CG
	Actual and estimated performance

	Conclusions
	Summary (in Estonian)
	Bibliography

