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nistus ning mida tähendab kellegi eest hoolitseda. Ma tänan teid, mu kallid vanaisa
ja vanaema, kes te olete mind alati hoidnud ja õpetanud haridust väärtustama. Ma
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Chapter 1

Introduction

The modern trends in software engineering are looking towards more generic ap-
proaches for software development. The latest developments in the field of soft-
ware engineering bring us to advanced techniques like Model Driven Architecture
(MDA) [KWB03], visual languages, or graph-rewriting approaches. This is a logi-
cal development in the software engineering considering the history and evolution
of programming languages. After the machine code was invented, the programming
languages have evolved towards higher abstraction levels which has given us dynamic
addressing, variable names, reusable function declarations, object-orientation, design
patterns, or visual modelling. It is obvious that generations of programming lan-
guages have been developed to facilitate software development and this trend will
probably carry on through the whole evolution of software development. We refer
to the software development techniques, currently at the highest level of abstrac-
tion as model-driven development. Model-driven development relies completely on
modelling of software models and replaces programming with code generation.

The idea of model-driven development has not yet materialized for the software
development on a large scale, and is probably not applicable in every area of soft-
ware development. However, there are areas and application fields which use these
generic techniques successfully. For example, model-driven development techniques
are applied in the field of eHomes also known as smart homes. The present thesis
about eHomes focuses on the following topics: development of an appropriate model
for eHomes and handling of its transformations during the specification, configura-
tion, and deployment process of eHome systems; development of tool support for
the process; and the research on advanced model-driven development techniques for
creation of the eHome model and the tools supporting the above mentioned process
for eHome systems.

This thesis was developed within the framework of research activities of the
Integrated eBusiness Systems in Home Automation group (also known as the eHome
group) [RWT]. The eHome group is a part of the Department of Computer Science
3 at the RWTH Aachen University. Our department has a remarkable history in
the field of research on graph transformation theory and graph-rewriting systems.
In fact, the graph-rewriting system called PROGRES [Sch91] was developed in the
late eighties at our department. The work on this system contributes a great deal
to research on model-driven development. As the eHome group itself is active in the
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2 CHAPTER 1. INTRODUCTION

home automation field, concentrating on eHomes, eHome services, their development
and deployment, we use the model-driven development techniques extensively in our
work. The research made by the eHome group has also contributed to the work
with numerous enabling technologies, such as component based service frameworks
(OSGi [CG01]), different communication protocols (X10 [X1004], UPnP [JW03]),
semantic webs and knowledge bases (OWL [BvHH+03]), to name but a few.

The term eHome, also known as smart home, denotes a living space, which
is equipped with different appliances. These appliances are computer controlled
devices, with features that can be combined in order to offer value added services
to the inhabitant of the eHome. These value added services, in other words eHome
services are related to the fields of comfort, security, or infotainment. eHome services
offer the inhabitant a greater value than just a set of electronic appliances present
in the living space.

The main emphasis of the work of the eHome research group lies in develop-
ing a specification, configuration and deployment process (SCD-process) for eHome
systems. This process is developed to introduce eHomes to the mass markets by
breaking an important price-barrier to enter the market. The SCD-process dissolves
the current expensive software development process for eHome systems, by replac-
ing it with a low-cost software configuration process for the systems. The eHome
systems and SCD-process are discussed in more detail in Chapter 3.

The basis for the SCD-process is the eHome model. This is a general meta-model
describing common aspects for all eHomes. The eHome model instance is derived
from the eHome model and describes the aspects of a particular eHome. The eHome
model instance provides the necessary details to specify and configure an eHome
system for the particular eHome. The eHome model instance is created and refined
during the SCD-process and contains all the information necessary to deploy the de-
sired eHome system into an ordinary home thus, transforming it into an eHome. The
first topic of this thesis deals with the eHome model structure and transformations
of the eHome model instance during the SCD-process (see sections 3.3 and 3.6).

The second topic of the thesis concentrates on tool support for the SCD-process.
The eHome group uses a graph based Fujaba tool suite [Zün99] in the software
development. Fujaba is a graph-rewriting system similar to PROGRES and can
be regarded as a successor to PROGRES, because the Fujaba project was initiated
in the late nineties by the people who developed PROGRES. But compared to
PROGRES, Fujaba relies on the latest UML [RJB99] modelling techniques and
produces by default a fully executable Java code generated from the UML models.
Fujaba is used in the scope of this thesis to specify fully operational eHome model
(see Chapter 3) for the eHomeConfigurator tool (see Chapter 4). The discussion
why it is Fujaba and not PROGRES that is used is given in sections 2.3 and 6.1.

eHomeConfigurator is a an application largely developed in the framework of
this master thesis, with an important role in all the phases of the SCD-process.
The phases of the SCD-process can be derived from its name: specification, config-
uration, and deployment. According to the phases, the eHomeConfigurator tool is
used to specify the eHome with its constructional ground plan, appliances, and the
already existing services. During the configuration phase, the tool configures the
eHome model instance according to the selected services, sub-services, correspond-
ing software components, and appliances. After the configuration phase resulting in
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a complete configuration, the eHome model instance is ready for deployment. The
complete configuration provides the services descriptions required by the eHomeCon-
figurator tool for deploying the corresponding software components onto the service
gateway in the eHome.

The implementation of the eHomeConfigurator tool comprises the visualisation
of eHome model instance’s structure. The model works with activity buttons and
menus for the models activities. There are also editors for different views on the
model instance and its contexts, wizards to guide the user stepwise through more
complex operations on the model. The development of the eHomeConfigurator tool
introduces the so called translator implementation problem handled in Chapter 2.
The translator problem lies in the implementation and maintenance overhead for
translators used to transform and synchronize the structures of the eHome model
instance with the structures needed for visualisation or on other technological plat-
forms.

The third topic of this thesis focuses on solving the translator problem. The
research on this problem includes the application of triple graph grammars [Sch94]
in software development to specify bidirectional translators to synchronise different
object models during runtime. This thesis develops a Fujaba-related generic trans-
lation and synchronisation framework called Transformation Rules for Incremental
Model Synchronization (TRIMoS) (see chapters 6 and 7). The framework enables
to replace the hand coded translators with visually specified rule sets.

The TRIMoS framework has currently shown a lot of potential for synchronisa-
tion of different object models. For example, the translator development problem1

tackled in this thesis can be solved in a more generic way using TRIMoS framework.
The future work on TRIMoS framework should have two main goals: firstly, the
development and refinement of TRIMoS into a well defined and documented Java
technology API; and secondly, implementation of the automatic activity invocation
mechanisms inside the framework to propagate only the method calls2 between the
synchronized models.

In summary, it can be said that this thesis focuses firstly on the development
of an appropriate model for eHomes and handling of its transformations during
the SCD-process. Secondly, the development of tool support for this process is
handled. And last but not least, the TRIMoS framework is developed to improve the
eHomeConfigurator development, which might be applicable in the object-oriented
software engineering in general.

1.1 Structure of the Work

The next chapter contains the motivation of this thesis, which describes two develop-
ment scenarios. The first one illustrates the current development and maintenance
process for the eHomeConfigurator tool and the second one describes the desired
outcome of this thesis. Chapter 3 gives an overview of the first topic of this thesis.

1The problem is illustrated by two development scenarios in Chapter 2. The first scenario
represents the currently used development steps for the tool in the framework of this master thesis
and the second one presents the desired outcome of this master thesis, solved with the TRIMoS
approach (see Chapter 6).

2The method calls are not related to the structures of the related models.
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It introduces eHomes, eHome systems, the SCD-process, describes the technical so-
lution and the structure of the developed eHome model. The life cycle of the eHome
model instance is viewed from the perspective of the SCD-process.

Chapter 4 introduces the tool support for the SCD-process and the eHomeCon-
figurator project in general. The development of the eHomeConfigurator tool is
discussed in more detail in the sections where the modules implemented in the scope
of this thesis are handled. The discussion raises the development problem of trans-
lators in the eHomeConfigurator tool. The solution approach for this problem will
be handled in the following chapters.

Firstly, the theoretical background for the solution approach is introduced in
Chapter 5. The theoretical background covers the graphs, graph transformations,
graph grammars and triple graph grammars (TGG). The TRIMoS approach solv-
ing the translator problem is based on triple graph grammars and is introduced in
Chapter 6. TRIMoS is a synchronisation framework, which helps to replace the
hand coded translators in eHomeConfigurator with translators specified by means
of visual rules. Chapter 6 deals with the TRIMoS transformation rules and their
differences from the classical TGG approach, but also the semantics of the rules.
Chapter 7 focuses on the implementation of the TRIMoS framework and synchro-
nisation mechanisms. This chapter discusses in detail the design of the framework,
the object structures created during the runtime of the framework and the imple-
mentation of the interpretation of different TRIMoSrule object stereotypes. The
adaptations of the JGraph API to be used with the TRIMoS framework are tackled
upon in the same chapter.

The next chapters give an overview of the future work in Chapter 8 and related
work in Chapter 9. Chapter 10 summarises the main findings of the research and
implementation of the trimos approach. The thesis is finalized with appendix A
containing an example TRIMoS rule set for environment editor of the eHomeCon-
figurator tool, a list of figures, bibliography and an index.



Chapter 2

Motivation

The motivation for this thesis is primarily to solve the current development prob-
lem of frequent eHome model changes. Every model change involves quite a severe
and error-prone coding overhead to adapt the eHomeConfigurator for those changes.
This thesis describes the eHome model and runtime transformations of the eHome
model instance (see Section 3.3) in the eHomeConfigurator tool during the SCD-
process. The execution of the SCD-process created the interest in developing the
eHomeConfigurator. Another interesting aspect of the thesis for us is to explore
new Fujaba-related possibilities, because this tool is an outstanding example sup-
porting the model-driven development practices and is most extensively used when
developing the eHomeConfigurator.

The Fujaba tool suite is used because the eHomeConfigurator project originates
from a lab course [Nor03], where Fujaba as a tool was studied and the initial form of
the eHome model and eHomeConfigurator was developed. It was a logical choice to
continue using the Fujaba tool since the author of this thesis was one of the students
participating in the lab course and it would be an enormous overhead to develop the
project from scratch using a different selection of development tools.

During the eHomeConfigurator project, the underlying eHome model has been
redesigned about eight times. Additionally, numerous minor adjustments have been
made to the model structure in the course of the project. Every major design
decision involves nearly all structural changes, which can be made in the UML
model in general: adding, removing classes; adding, changing, removing relations;
adding, changing, removing class attributes, and methods – see Figure 2.1. All these
changes require manual programming to adapt the eHomeConfigurator tool for the
changes made. To emphasize the primary goal of this thesis, which is to research
more generic ways for the eHomeConfigurator development and to illustrate the
problems related to the goal, there are two development scenarios presented in the
next section.

2.1 Example Scenarios

The objective of the eHomeConfigurator development is to enable working with the
eHome model and to create the surroundings which encapsulate the whole life cycle
of the eHome model instance (see Chapter 4). The eHome model instance is trans-

5



6 CHAPTER 2. MOTIVATION

Figure 2.1: The possible changes in the eHome model

formed and refined during its life-cycle according to the specific eHome environment
and requirements of the inhabitants of the specific eHome. All changes to the model
instance structure during the SCD-process are performed using the eHomeConfig-
urator tool. The next two sub-sections present two alternative eHome configurator
development scenarios.

Both scenarios have one common step, which consists of the creation of the
eHome model using Fujaba (see Chapter 3). Fujaba allows us to describe the eHome
model’s static and dynamic structure by means of UML diagrams. After the model
is designed, the corresponding Java code is generated with Fujaba. The eHome-
Configurator is developed to encapsulate the code generated for the eHome model,
which is the inner data structure for the eHomeConfigurator tool. This tool enables
working with the eHome model instance serving as the user interface of the eHome
model instance.

2.1.1 First development scenario for eHomeConfigurator

In the first case, the graphical user interface (GUI) of the eHomeConfigurator (see
Figure 2.2) has to be developed manually. The tool development starts with pro-
gramming the main frame with different menus and general tool bar buttons, also
relating the menus and buttons with the activities of the eHome model. Every con-
text (see Section 3.5) of the eHome model requires an editor panel programmed
to work with the context concerned, and every editor requires activity buttons for
the activities of the eHome model1 corresponding to the context view reflected in

1Activity is a synonym for a method in object oriented model, i.e. activities are the methods
defined in classes of the eHome model.
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the editor. These buttons have to be placed and set to call the activities in the
appropriate model context. For the input parameters of every activity, the input
forms have to be programmed. In addition, the visualisation of the editor has to
be implemented. In the case of visual editors, the translators visualizing the graph
structure of the eHome model instance have to be programmed. These translators
create the corresponding visualizing JGraph [Com] structures on the editor panel
surface.

menus

tool bar

acitivity form

visual editor
(JGraph)

activity buttons

Figure 2.2: The environment editor of the eHomeConfigurator tool.

We consider as a simple illustrative example, a model change which states that
locations can have sub-locations. A sub-location models a part of a larger location.
For instance, a living-room can have a window area as its sub-location for advanced
illumination control in the eHome. This change is quite trivial and is done in the
environment context of the eHome model (see Figure 2.3). In the eHome model’s
UML class diagram, the Location class has to be provided with a self-relation on this
class like in Figure 2.3. This is done with Fujaba. The self-relation has to be enabled
through an activity in the model dynamics. Activities are specified by Fujaba story
diagrams. There is a story diagram specified for the Location class (see Figure 2.4),
which defines the method createLocation(String name) generated later into the
Java code. The Java code is generated with Fujaba, as well. These development
steps complement the model with sub-location concept and dynamics necessary to
create the sub-locations.

The structure of the model has changed in the environment context, which cor-
responds to the building structure of the eHome. The environment editor of the
eHomeConfigurator tool (see Figure 2.2) has to be adapted correspondingly. To vi-
sualize this structural change, the translator that translates the environment context
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Figure 2.3: The environment context of the eHome model without (on the left)
and with the sub-location concept (on the right).
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Figure 2.4: The activity for creating sub-location

of the model instance into the JGraph structures, has to be adapted to consider the
new self-relation on the Location class.

In a situation, where Room A has the Door Area as its sub-location and the
Door Area is important for the security service as an area under surveillance, the
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translator of the environment editor has to be re-programmed to visualize this sit-
uation on the JGraph panel of the editor. The adaptation of the translator is done
manually. Manual programming is performed by providing the editor with a button
and an input form for the new activity createLocation(String name) described
in Figure 2.2. These steps finalize the change request for adding a sub-location
concept into the eHome model.

2.1.2 Improved development scenario for eHomeConfigurator

Similarly, in the second case: after the eHome model has been developed, also the
eHomeConfigurator has to be developed. However, in this case, the sub-location
concept is needed to be introduced into the model with no manual programming.
The whole user-interface with its different API technologies is initialised by a set of
visual initialization rules resembling UML object diagrams. The runtime behaviour
such as invocation of activities on the model instance and the visualization of model
instance’s graph-like structure, is also described by the set of visual rules. The
visual rules are comprehensive and express the same object structure as described
in Fujaba for the eHome model. Currently, nearly all this can be done using the
generic activity invocation mechanism [NSSK05] (see Section 4.3.2), which instead
of visual rules involves XML configuration files, and secondly, with the TRIMoS
framework, which uses visual rules (see chapters 6 and 7). Both tools are extended
or developed largely in the framework of this thesis.

The modifications on the eHomeConfigurator to adapt it to the illustrative new
sub-location concept have only two simple steps. First, a TRIMoS rule set for the
environment editor has to be complemented with one new rule describing the self-
relation on the Location class (see Figure 2.5). The second step enables the button
for the method creating a new sub-location. This is done by changing the XML
configuration of the generic activity invocation mechanism. The example is given in
Listing 2.1.

1 <ACTIVITY name="createLocation" label="New SubLocation">
2 <TOOLTIP >
3 Creates a new sub -location connected to the location.
4 </TOOLTIP >
5 <CONTEXTS >
6 <ENVIRONMENT/>
7 </CONTEXTS >
8 <PARAM label="Name">
9 <TOOLTIP >The name of the new sub -location.</TOOLTIP >

10 </PARAM>
11 </ACTIVITY >

Listing 2.1: The XML configuration for a new method createLocation(String
name).
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l2 : Location

<<create>>

name = newName

userObject = newName

l1.subLocations
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d2 : DefaultGraphCell
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p1 : DefaultPort

<<create>>

e : DefaultEdge
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p2 : DefaultPort

<<create>>

eHome model JGraph model

Figure 2.5: The TRIMoS rule to create a sub-location and corresponding JGraph
structures. The rules follow the UML object diagram notion. The postcondition
rule elements are denoted with stereotype create.

2.2 Motivation Conclusion

Considering these two development scenarios, it is obvious that in the first case, every
change in the eHome model results in a considerable coding overhead. Procedures
described in the second development scenario, on the other hand, are more desirable
and easier to perform, especially from the perspective of software maintenance. This
can be concluded from the following facts:

1. In the first case, the development and adaptations in the eHomeConfigurator
have to be made by reading, refactoring and reprogramming the tools code.
This means changing the code of the visual editor translators, the code for ac-
tivity buttons, their input forms, and eHomeConfigurator menus. This process
is error-prone, requires extensive debugging and testing.

2. In the second case, there are XML configuration and visual rule sets to be
specified and maintained. Although the XML configuration is also changed by
hand, it requires considerably smaller effort. The visual rules are comprehen-
sible – easy to understand and to write down.
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3. As to maintenance, it is easier to find and change visual rules than analyse the
translator code and search for the code segments where the changes have to
be made.

4. The hand-coded translators are not bidirectional. Since the TRIMoS frame-
work is based on triple graph grammars (see Chapter 5), it works as bidirec-
tional transformation framework.

5. The visual rules can also be changed during runtime of the tool in testing,
because the TRIMoS framework has interpretative nature.

So far, the development of the TRIMoS system has shown a lot of potential
for the future work. This thesis tackles the problem of frequent structural changes
of the eHome model in the case of eHomeConfigurator maintenance as described
in the development scenarios. The future work on the TRIMoS implementation
may also concern the automatic activity invocation. The TRIMoS system could be
changed in the way that the visual rules would have the expression power to relate
method calls on different models to carry out related computations, which have no
effect on the graph-like structure of the models2. Considering this development,
the given generic activity invocation mechanism will be redundant. TRIMoS can
also be extended and refined by further development to a production-level Java API
having simpler interface and the defined procedures to operate it with. These further
developments are beyond the scope of this thesis.

2.3 Solution Sketch

As indicated, there is a most urgent problem in the maintenance of the translator
code which transform the eHome model structures to the JGraph structures. The
solution for the translator problem is quite elegant. The structures of the eHome
model and JGraph model have to be linked to follow the structural changes of one
another reactively and automatically. This is done using the triple graph grammar
based TRIMoS approach (see Chapter 6). A graph grammar itself defines a set
of production rules on graphs, i.e. graph rewriting rules. The set of the graph
rewriting rules defines a graph language – a finite or infinite set of graphs, which can
be produced/ constructed according to the grammar of this language (see Chapter 5).

The idea of triple graph grammars is to bind two different graph grammars with
the third graph grammar. We call these two graph grammars left- and right-hand
side grammar. The connection of the left- and right-hand side grammars is done per
graph rewriting rule on both sides via a third graph rewriting rule in between. In
case a rewriting rule is executed on either of the left- or right-hand side graph, the
third graph in between triggers the related graph rewriting rule on the other side.

The content of this thesis is to extend and develop the TRIMoS system, which
was initially developed at the University of Kassel, Department of Computer Science
and Electrical Engineering by the Research Group Software Engineering as a proof of
concept for simple form of an interpreter for triple graph grammar rules. Before the
beginning of the work on this thesis, the TRIMoS system was able to produce simple

2For example, statistical computations
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tree-like structures related to each other. It was not able to delete the elements
from the structures produced or keep them in sync in the perspective of deletion or
more complex graph structures. The reasoning behind the usage and development of
TRIMoS and not using the PROGRES system developed in our chair is the following:
the eHomeConfigurator uses the Java programming language specific visualisation
technologies not supported and enabled by PROGRES. We have situations where the
visual actions on user interface imply the eHome model instance’s structural changes
beneath the user interface. For example, if device D on the eHomeConfigurator
display is moved from room A to room B, the link between the corresponding Device
object D and Location object A has to be destroyed in the structure of the eHome
model instance and created between the Device object D and Location object B.

The usage of the TRIMoS system implies that instead of the hand-coded trans-
lators, there will be one set of TRIMoS rules for every visual editor. These rules
are edited with a simple TRIMoS editor which visualises one graph rewriting rule
from the left-and right-hand side graph grammar (see Figure 2.5) and enables the
developer to create, examine, or manipulate these two rule sides. The third graph
grammar rule in between is hidden and handled automatically by the TRIMoS sys-
tem during runtime.

If the change occurs in the eHome model, only the set of rules belonging to the
visual editor addressing the context of the eHome model where the change occurred
has to be changed. In the second illustrative development scenario, where a sub-
location concept was introduced, there has to be a new rule (the rule is shown on
Figure 2.5) added to the rule set defining the environment editor of the eHomeCon-
figurator tool (see Figure 2.2). This kind of an approach has smaller development
overhead, is more comprehensive, and less error-prone.

2.4 Summary

This chapter gave an overview of the motivations behind this thesis. We introduced
an eHomeConfigurator development related problem, as well as two development
scenarios, where the second scenario is the desired outcome of this thesis and presents
development techniques with minimal coding overhead. In the next chapters, we will
give an overview of the SCD-process, the eHome model and the eHomeConfigurator
development. We will also introduce the theory behind the TRIMoS solution and
the approach itself.



Chapter 3

The eHome Model and the
SCD-process

The eHome Group located at RWTH Aachen University, Department of Computer
Science 3 is active in the research field dealing with home automation, smart homes
also known as eHomes. The eHomes are living spaces equipped with computer
controlled electronic appliances and services combining the functionalities of those
appliances. These services offer the inhabitant an additional value which is greater
than just a plain set of devices and the sum of their functionalities. The term eHome
system denotes a computer system the presence of which at home transforms it into
an eHome. The eHome system consists of all the hardware and software required to
provide eHome services in the home environment.

3.1 The eHome System

Figure 3.1 illustrates the structure of the eHome system. The eHome system com-
prises all the hardware, software and supporting systems for providing the smart
home environment with its services for the inhabitants (multiple users). For ex-
ample, eHome services may cover the fields of security, comfort or infotainment.
According to Figure 3.1, an eHome system has three levels:

1. the hardware level contains appliances such as cameras, sensors for movement
or temperature, lamps, heater systems, media devices, the local and remote
communication devices to interface the inhabitant with the eHome system
(computers, PDAs, mobile phones, etc.), but also the residential gateway hous-
ing the service gateway and eHome service software.

2. the software level includes the eHome service software, the service gateway as
the service middleware for eHome services running on the residential gateway,
the client software running on the communication and interface devices.

3. the supporting systems deal with services provided by the service providers to
support the eHome with additional features, information, for example weather
or traffic information, news, digital media, etc.

13
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Figure 3.1: The structure of the eHome system

The eHome research group deals with the eHome system related problems, espe-
cially the development and architecture of these systems but also with the related
business processes. One of the key problems up to now is how to introduce eHomes
to the masses. The research on this problem is embodied into the work on the Spec-
ification, Configuration and Deployment process (SCD-process) for eHome systems.
This thesis contributes to the research on the SCD-process, dealing more specifically
with the tool support for this process and with the design and SCD-process related
transformations of the underlying eHome model.

The next sections of this chapter and the next chapters cover the SCD-process
and its enabling factors like the eHome model (see Section 3.3) and tool support (see
Chapter 4). In this chapter, we will first introduce the SCD-process. Secondly, we
will focus on the eHome model, its technological solution, structure, and finally we
will deal with the transformations of the model instance during its life cycle in the
SCD-process. The tool support for the SCD-process will be addressed in Chapter 4.

3.2 The SCD-process for eHome Systems

The reason for developing the Specification, Configuration and Deployment process
(SCD-process) for eHome Systems is to establish a low cost process to introduce
eHomes to the mass-market. The main obstacle preventing eHomes from becoming
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common in the welfare society is the relatively high price of the software driving
the eHome since it needs to be developed or adapted for every particular eHome.
Despite the fact that the appliances used in smart homes are getting constantly
cheaper, very little research has been done on the subject of eHomes, except for a
few enthusiastic development projects [inH05, T-C05]. The main reason for this is
the large amount of coding work needed to complete this kind of project.

The idea of the SCD-process is to establish an iterative chain of procedural
techniques to automate the creation of the eHome as much as possible. This means
that we are looking for ways to automate and support the process of specifying,
configuring and deploying an eHome system into the normal home - transforming
the regular home into an eHome. This is achieved by means of tool support, reuse
and mere configuration of software components for providing eHome services. It is
essential that the shift from the normal home to an eHome did not involve developing
the software but merely configuring and deploying it. Furthermore, the configuration
and deployment of the given components must also be done automatically. As the
result, the specification of the home environment, selection of the desired eHome
services and installation of necessary appliances are the only activities performed
manually.

As the name of the SCD-process indicates, the process consists of the following
phases:

1. Specification of the eHome environment and necessary services. During this
phase, the architectural information about the eHome is captured – how the
rooms in the home are located and connected with the different location el-
ements such as doors and windows. The given appliances and their location
in the home environment is described – in which rooms or on which location
elements the devices are positioned. The already existing eHome services are
also identified – when modifying the configuration of the eHome, the already
existing eHome services have to be specified. Whenever new eHome services
are needed, they are selected and added to the specification. Only top-level
services are selected.

Along with the eHome environment, the services used later in the eHome
environment, plus the required devices and functionalities need to be defined
and specified beforehand, as well. For more information about the specification
phase see sections 3.6.2.

2. Automatic configuration of the selected services. The services selected in the
specification phase are automatically configured. This means that the neces-
sary devices still missing from home are added to the configuration. Likewise,
the required sub-services that are missing are selected to meet the functional
requirements of the selected services. For example, if the lighting service needs
at least one lamp per room and one switch to control the lamp, these devices
are added to the configuration. Furthermore, the corresponding driver compo-
nent services for the lamp and switch controllers are added to the configuration.
For more information about the configuration phase, see Section 3.6.3.

3. Deployment of the service configuration onto the service gateway in the eHome.
The software components specified and configured during the first two phases
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are deployed automatically onto the service gateway residing in the eHome.
The software components are also initialized properly and launched automat-
ically. For more information about the deployment phase, see Section 3.6.2.

3.3 The eHome Model

The whole SCD-process is strongly related to the eHome model. The eHome model
is a meta model describing real eHomes, depicting aspects relevant for the SCD-
process, eHome systems and the runtime of these systems. In other words, the eHome
model is a general model defining a language to express the specific eHomes. This
model contains the information required to model the specific home environment,
appliances, services, etc. The model describing one particular eHome is called the
eHome model instance.

We chose this notion to call the general model the eHome model and the specific
model derived from it the eHome model instance, since the eHome model is an object-
oriented model consisting of classes, their relations and the dynamics of the classes.
The eHome model instance, on the other hand, is an object model constructed
and maintained for one particular eHome during the runtime of tools supporting
the SCD-process and runtime of the eHome system (for more information about
tool support, see Section 4.1). We use the object-oriented terminology by calling
the object model derived from the eHome model class structures the eHome model
instance since this is literally a structure of the objects, i.e. the instances of the
classes. The instance of the eHome model represents one particular eHome with all
its specific details and configuration and is the basis for the SCD-process.

The model instance is actively involved during the runtime of the eHome system
as it provides information about the home environment for eHome services. This
enables the development of context aware eHome services which need the real-time
information about the inhabitant locality, and the states of other services, or appli-
ances. In other words, the eHome model instance is also a communication medium
for eHome services.

The author of this thesis has been the main contributor to the eHome model
development and its embedding into the SCD-process in the past two years, as well
as a senior developer of the tools supporting the work with the eHome model instance
and the SCD-process. The next sections give an overview of the development of the
eHome model, its contents and its function in the SCD-process. The tool support
for the process is handled in Chapter 4.

3.4 Technical Solution for the eHome Model

The eHome model is developed using the Fujaba tool suite [Zün99]. The Fujaba tool
suite enables the development of an object-oriented model and the generation of a
fully executable Java code for the model. The model has its statics and dynamics.
The static structure of the model is designed using a UML class diagram describing
the classes of the model and their relations to each other. During the runtime,
the objects of the model classes are created according to the structure of the class
diagram.
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There have been several other versions of the eHome model before the current
one. The first model was designed using the ontology web language (OWL) and the
tools supporting the SCD-process were therefore developed using knowledge base
specific technologies [KNS04]. The reason why there was a change in technology to
use object-oriented models and the Fujaba tool instead, was to enable a bigger variety
of choices for development of the SCD-process supporting tools. The object-oriented
model is easier to operate with during the tool support software development and
has proven to be the right technological choice.

The dynamics or runtime behaviour of the eHome model is described by means
of Fujaba story diagrams [FNTZ98]. The Fujaba story diagrams are a combination
of the UML activity diagrams and UML collaboration diagrams. The story diagrams
can be considered as activity diagrams having their own activity type called story-
activity which enables describing the interaction of objects during the operational
sequence of the program or the time-flow of the program execution. In terms of
methods of the classes it means that every method in the class is described by a
story diagram. The story diagrams enable the full expression power of the Java
programming language.

By describing the eHome model using UML diagrams, no manual coding is
needed. After designing the model in Fujaba, the model’s Java code is generated
with the same tool. The code is compilable and error free from the human error
perspective. The only problems appearing in code are due to incorrect modelling of
the classes or their methods.

The structure of the eHome model is quite complex. It includes six different
contexts starting with the building structure of the eHome and ending with the
environment information for services during runtime. The next section will introduce
each of the six contexts together with their static structure. The complete model
will not be visualized as one unit due to its complexity.

3.5 Contents of the eHome Model

The eHome model has six different contexts. These contexts provide all the infor-
mation needed to support the SCD-process and the runtime of the eHome system.
The contexts are the following:

1. The functionality context. This context covers the functionalities of the eHome
services, as well as the appliances. See Section 3.5.1.

2. The device definition context. This context describes the devices and their
properties. See Section 3.5.2

3. The environment context. This context includes information about the build-
ing structure of the eHome, the given appliances and eHome services. See
Section 3.5.3.

4. The service context. This context represents the services, their functional
requirements and presence in the eHome. See Section 3.5.4

5. The service instance context. The context expresses the runtime configuration
of services. See Section 3.5.5
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6. The inhabitant context. This is a slice of the model which contains information
about the inhabitant in the eHome. See Section 3.5.6.

3.5.1 Functionality Context

The smallest but one of the most important contexts of the eHome model is the part
describing functionalities of the services, as well as the appliances (see Figure 3.2).
The functionalities are described by means of Function class which has a self-relation
describing that one functionality can be refined by another one. For example, a
detection functionality can be refined by the functionalities: movement detection,
smoke detection, glass breakage detection, etc. (see example in Section 3.6.2).

0..n

refines 
0..1

collapsed

String : name

Function

Figure 3.2: The functionalities context of the eHome model

The self-relation of the Function class results in the tree structure of objects from
this class. Functions are defined by their names and the refinement relation of the
functionalities should be used in such a way that the most general functionality is the
root of the tree and the leaves are the most specific functionalities (see Figure 3.10
in Section 3.6.2).

3.5.2 Device Definition Context

The devices used in the environment specification phase of the SCD-process are pre-
defined. In the case of a device, or several devices of the same type specified in the
eHome environment (see Section 3.5.3), there must be a device definition describing
the device, including the manufacturer information, the name, and attributes. This
device is specified in the environment as an instance of the device definition with a
specific hardware address (IP address, house code for X10, USB address, etc.) and
recognizable name. In figure 3.3, the device definition is represented by DeviceDe-
finition class. The device as the instance of its definition is represented by the
Device class and the attributes by the Attribute class.

In earlier versions of the eHome model the devices were regarded as the aggre-
gate of functionalities. This was needed for meeting the requirements for eHome
services. Although the essential part of the devices is still described by means of
functionalities, it is done by using the software component (see Section 3.5.4). This
is because the hardware itself and the physical connections have no significant role
in the software configuration step during the SCD-process since in the case of the
higher level software and user interfaces, the hardware is visible only through hard-
ware driver components, their attributes and access methods. The communication
between appliances is also performed over lower level drivers and communication pro-
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Figure 3.3: The device definition context of the eHome model

tocols, so physical connections are not relevant for the SCD-process (see sections 3.2
and 3.6.3).

3.5.3 Environment Context

The environment context of the eHome models the location information according to
the ground plan of the home, the given appliances and the given eHome services. The
environment context can provide a set of different environments which are connected
via locations or location elements for the eHome. For example, the house can be
connected with an external garage, by a hall, or just a door. Since there is also a
sub-location concept implemented, it means that, for example, a floor can have its
rooms as sub-locations or the room can have different service-related areas near the
windows, doors or a TV set. This kind of modelling freedom and generality gives
us a mechanism powerful enough to express any kind of architectural designs. We
mostly concentrate on floor plans, but we can also express 3D designs using the
connective and descriptive location elements.

The environment context has the EnvironmentElement class as a super-class for
any other class describing location information of the home (see Figure 3.4). Envi-
ronmentElement aggregates the common features of the classes describing the home
environment. Since the classes Environment, Location, and LocationElement in-
herit from the EnvironmentElement class, they have a relation to the Device class.
This means that every element in the environment context can have appliances re-
lated to them. For example, in the living room, there can be a lamp, a media set
with speakers and a LCD screen, controlling switches, etc.; the door in the room can
have a movement detector attached to it; and the window can have a class-brake
detector attached to it.

The (see Figure 3.4) Environment class depicts the environment which is a logical
independent entity of the living space with its locations, appliances and eHome
services, a typical eHome. The Location class corresponds to one logical location
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entity in the eHome environment, for example, a floor, a room or a part of the
room. Locations are important for services because the location is a smallest unit
covered by a service according to our service selection strategies (see sections 3.5.4
and 3.6.2).

The Location class has a self-relation sub-location for the sub-location con-
cept. This relation defines a hierarchical location graph expressing logical substruc-
tures in the locations themselves. This graph must be a directed acyclic graph
(DAG). It makes no sense to have a transitive cycle, where one location is simulta-
neously a parent and a sub-location of another location. For example, the first floor
contains a living room as a sub-location and the living room has a window area as
its sub-location. Whereas, if the window area has the first floor as its sub-location,
the first floor would also be the sub-location of the living room which in turn is
a sub-location of the first floor. This would be a contradiction in the sub-location
concept we have.
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Figure 3.4: The environment context of the eHome model

The LocationElement class describes one logical component of a location - win-
dows, doors, or why not an elevator shaft. The LocationElement objects like doors
can be shared between locations so that logical connections appear. Thus, environ-
ments, locations, and connecting location elements can form a complex graph that
represents the logical connections1 in an architectural design. An example of the
environment is depicted in Figure 3.9.

3.5.4 Service Context

The service context of the eHome model represents eHome service descriptions, or
more accurately, the definitions of eHome services. It is crucial for the SCD-process
that the eHome service software components configured during the automatic con-
figuration phase are modelled beforehand since the automatic configuration relies

1The connections describe the relations between the entities in the architectural design thus,
modelling also the three dimensional relations in the building.
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on the abstract description of the eHome service software. The Service context does
not include the runtime configuration of the selected services, which has to be de-
ployed onto the service gateway in the eHome during the deployment phase of the
SCD-process.

Figure 3.5 outlines the service context of the model. The service itself is modelled
by the Service class which contains information such as the id, name, type, and
description of the service, but also the information on the resource URI of the
corresponding software component installed during deployment phase of the SCD-
process. The Service class is an abstract description of the corresponding software
component executed during the runtime of the eHome system.
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Figure 3.5: The service context of the eHome model

The essential part of the service description is specified by functionalities. The
Service class has three indirect relations to the Function class over the Service-
FunctionCardinality class. The service is described by the functionalities it pro-
vides, requires, and optionally requires. As mentioned in Section 3.5.2, the func-
tionalities of the devices are considered to be a part of driver services. Service-
FunctionCardinality class is used since the configuration step of the SCD-process
requires cardinalities on the functional requirements of the service (for more infor-
mation and examples see sections 3.2 and 3.6.3).

The functionalities give the SCD-process a dynamic composition and dependency
resolution during the automatic configuration step forming a certain abstraction
layer for service composition. The services may require functionalities in order to
combine them and offer this combination or to be able to provide additional func-
tionalities.
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The Service class has two relations to the Attribute class. These two relations
model the global attributes of the class – general information for the service, not
dependent on a specific eHome; and specific attributes – attributes which are set for
the runtime instance of the service (see Section 3.5.5).

Services are related to the environment information. The relation between En-
vironmentElement and Service class implies that the corresponding environment
element offers this service for the eHome inhabitants. This relation is typically used
for locations. It means that the most straight-forward strategy2 is to define in which
rooms the specific services are provided for inhabitants. The links between locations
and the service are created when the service is selected during the specification phase
of the SCD-process. An example of this is provided in Figure 3.15, where the Music
Follows Person service is available in the location Living-room.

Services also have a relation to the Environment class which indicates whether
the selected service for the home is configured during the automatic configuration
step or not. It is also stated whether the environment hasActive services and not
active services. Not active services can be configured and started later according to
the home-owner’s needs.

The Service and DeviceDefinition class are related, as well, as the devices
are controlled by the software. This is the case for services which in fact are driver
components of the devices. The device driver component provides the other services
or the end-user with functionalities attributive to the controlled device. This rea-
soning concludes with the fact that devices as such have no great significance for the
automatic configuration phase of the SCD-process. An example of a device driver
service is presented in Figure 3.12 or 3.18.

3.5.5 Service Instance Context

In the service context, the service is modelled by its functional dependencies. The
model instance context models the runtime configuration of eHome services in the
eHome system. During the configuration step of the SCD-process, the structures of
the eHome model instance corresponding to this context are filled automatically (see
Section 3.6.3). The service instance context models the service configuration during
runtime of the eHome system. To give a better overview, the context is visualized
on two figures 3.6 and 3.7.

According to Figure 3.6 the ServiceObject class models the service instance and
has a relation to the Service class indicating which service is instantiated as the
service object. The idea of the service instantiation is to assign a ServiceObject
with its specific configuration to every EnvironmentElement which provides the
selected Service. Thus, Figure 3.7 shows a relation between the ServiceObject and
the EnvironmentElement class. This relation is in corresponds to the relation
offers in Figure 3.5.

Similarly, the controls relation between the ServiceObject and Device classes
(see Figure 3.7) corresponds to the controls relation between the Service and
DeviceDefinition classes (see Figure 3.5). The controls relation described in the
service instance context models the situation where a service instance can control

2The strategy used by our eHome research group.
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Figure 3.6: The relation between service and service instance of the eHome model
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Figure 3.7: The service instance context of the eHome model

specific devices, using its specific configuration. This relation does not reflect the
general relation between the device driver service component and the device type it
controls.

The service instance can have states described by the State class. The states
describe runtime attributes of the service, which can be changed during runtime.
For example, in the case of the device driver service component, the state can also
describe a state of the controlled device – on/off.

The number and types of the attributes of the service instance itself are described
by the service it instantiates. The values are set separately for each service object.
For example, by the e-mail notification service the attribute e-mail address is de-
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scribed with arbitrary default value. In the case of the instance of this service, the
e-mail address has to be provided during the configuration step of the SCD-process.

The service instance object in the model has also a reference to its implementing
software component. This is realized via the relation has runtime component with
the EhService interface. It means that every software component implementing
an eHome service modelled in the eHome model instance also has to implement
this interface. This relation enables the model to be aware of the implementing
software components and also to call methods upon them according to the EhService
interface (more information about this in Section 3.6.5).

But the most important relation in the service instance context for the configu-
ration step in the SCD-process is the self-relation uses of the ServiceObject class.
This relation expresses the usage relation between the services during runtime. In
the service context, there is no explicit relation between the services. The reason for
that is to use the functional abstraction layer3 around the services for the service
composition to enable straightforward automatic configuration of the services during
the SCD-process.

As mentioned before, the service instance context is filled with objects and data
during the configuration step of the SCD-process. The tools supporting the auto-
matic configuration (see Chapter 4) take into account the selected services, their
functional requirements, and then compose a suitable set of services to enable the
selected services in eHome. The suitable set is composed as the structure of the ser-
vice instances where the usage relations between the services are expressed explicitly.
The composition uses the indirect provides, requires, and optionally requires
relations between the Service class and the Function class (see Figure 3.5). These
relations are used to construct a usage and dependency graph of the service in-
stances, expressing the runtime structure and configuration of the eHome services in
the eHome system. For more information about the configuration step and eHome
model see Section 3.6.3.

3.5.6 Inhabitant Context

The inhabitant context models the person-related information in eHomes. The per-
son related information is irrelevant for the SCD-process, because the process in-
volves the specification, configuration and deployment of eHome systems in general.
The emphasis of the process lies on the resource and dependency resolution. Nev-
ertheless, information about the person plays an essential role during the runtime
of the eHome system, for example, when communicating information about the in-
habitant’s location to the services. Person related information is also important for
other eHome processes like business processes [Kir05] and possible transportation
of services between different eHome environments4. For those reasons the person
related information is modelled in the eHome model.

Figure 3.8 presents the super class Person of the classes Inhabitant and Cus-
tomer, modelling the most important properties of the person under consideration.

3The services are described as entities having functional imports and exports, so far these func-
tions have been specified as semantic labels on the conceptual abstraction level.

4The transportation of services is studied under the latest research topic on virtual eHomes in
the eHome group.
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The Customer class is important for eHome related business processes which is a
topic beyond the scope of this thesis, but is thoroughly handled in [Kir05]. The In-
habitant class models the inhabitant of the eHome. The relation is In between the
classes Inhabitant and Location represents the location information of the inhab-
itant describing where the person is currently located (for example, if mother is in
the kitchen). This information is needed for the services which require information
about the location of the people in the house.

0..n

0..1

Is in 

Inhabitant

String : surname
String : name

Character : gender
String : birthday

Person

String : id

Customer

collapsed

Location

Figure 3.8: The inhabitant context of the eHome model

3.6 The Life Cycle of the eHome Model Instance

This section gives an overview of the life cycle of the eHome model instance in
four stages throughout the SCD-process and runtime of the eHome system. We
describe how the eHome model instance is formed and transformed during the SCD-
process and which model contexts are involved in specification, configuration, and
deployment phases of the SCD-process; but also how the model instance is changed
and used during the runtime of the eHome system.

As mentioned, the eHome model is designed using Fujaba tool, but this model
is actually a meta model for specific homes. This particular eHome is modelled by
using the eHome model instance. This instance is constructed and modified during
the SCD-process and also during the runtime of the eHome system. The life cycle
of the eHome model is iterative due to the iterative nature of the SCD-process but
also because nearly every software engineering process is iterative. Therefore, the
life cycle of the eHome model instance can return to its earlier stages according to
the phases of the SCD-process and runtime of the eHome system.

To give a better idea of the changes throughout of the life cycle of the eHome
model instance during the SCD-process and runtime of the eHome system, we in-
troduce an illustrative example. This example consists of a simple scenario of the
application of the SCD-process for a small apartment. This home is converted into
an eHome by deploying one eHome service into its living space. The next subsec-
tions give the illustrative scenario and stages of the life cycle of the eHome model
instance.
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3.6.1 Illustrative Example of the SCD-process Application Case

As an example of the SCD-process, we have a small apartment, consisting of a hall,
a bathroom, a living-room, and a bedroom. The living-room has a small kitchen
corner for cooking (see Figure 3.9). This is a typical bachelor apartment for one
person. The owner of this home is a bachelor who loves music and wants to hear the
music everywhere in his apartment, while taking a bath, for instance. Nearly all of
his music collection is on the PC. He can buy an expensive sound system connected
to the computer and supporting at least three pairs of speakers. However, he would
expect his sound system to be a little smarter than that. In this case, he would like
to have the following feature: if a particular person listens to the music, the music
played at the time follows the person from room to room.

Figure 3.9: The floor plan of the example apartment.

In order to meet this additional requirement and solve the music coverage prob-
lem, it is possible to install a few additional devices and one corresponding eHome
service for the inhabitant, transforming his living space into an eHome. The required
service is called Music Follows Person service. This service routes the music from
one room to another, particularly to the speaker systems in these rooms. The Music
Follows Person service is activated by the person in one of the rooms by switching
the corresponding switch. The preselected music stream starts to play in this room.
When the person leaves the room, the music stops playing in the room and is played
in the room the person enters. The movements of the person are tracked by a person
detection system.
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Using the SCD-process and the corresponding tool support for the process, the
described eHome service is selected and deployed into the eHome. The example
of the music loving bachelor and Music Follows Person service is used to illustrate
the following sections and to give a better idea of the changes in the eHome model
instance during the SCD-process.

At this point, the example only consists of the wish of the customer and the floor
plan of his apartment. In the next sections, this example is refined and extended
relating it to the different model contexts and the SCD-process. The next subsections
correspond to the four stages, which form the life cycle of the eHome model instance.

3.6.2 Changes in the eHome Model Instance Structure During the
Specification Phase

The specification phase of the SCD-process addresses most of the model contexts, in
particular the functionalities, device definitions, devices, the environment, service,
and inhabitant contexts. As the name of the phase states, all the necessary data for
the next process phases is gathered during specification as user or third party input.

The specification process involves several parties. It is even possible that a
home owner does not participate in the process, except by submitting an order for
the desired services for the eHome system. In this case, the third parties like the
corresponding service providers perform the whole SCD-process.

The specification phase can be viewed on two levels:

1. the specification of the common bearings of eHomes and eHome systems like
device definitions and services used in numerous eHomes;

2. the specification of the characteristics of the particular eHome like its floor
plan, existing devices, and selected services.

We will first address the general part of the specification and then move on by
describing the specification of a particular eHome.

Specification of Common Aspects for eHomes

Considering the example where the Music Follows Person serviceis needed, it is
necessary to specify the functionalities, devices, and services before it is possible to
offer the services for the customer. Thus, the specification starts with addressing
the functionalities.

The required set of functionalities have to be defined beforehand. The corre-
sponding model context (see Section 3.5.1) implies that the functionalities have to
be organized into a tree structure. The tree expresses the refinement hierarchy of
the functionalities, in which the children of a functionality refine the parent. For
example, detection can be refined by movement detection and smoke detection. Fig-
ure 3.10 outlines a tree of functions which are needed to describe the Music Follows
Person service and the required sub services described later in this section. The
functionality tree in the figure consists of three main branches: detection, music
follows person, and drive. The branches are refined where necessary, for example
the detection function is refined by detecting person, movement, and switching.
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Figure 3.10: The necessary functionalities for the Music Follows Person service.

Likewise, the devices used by the services have to be specified. For example,
Figure 3.11 describes a simple web-cam definition in the device definition context of
the eHome model. This web-cam can be used for getting a video stream or pictures
from a room used for movement detection or person recognition. The description of
the device is rather simple. It only describes a device as an entity with necessary at-
tributes, for example, an USB camera number, IP address, or some other addressing
attribute.

Figure 3.11: The definition of a web-cam used by the person tracking system.

The device definition is as simplified as it is since the information on the function-
alities of the devices is described elsewhere, namely in the service context. For exam-
ple, the service encapsulating the device driver of the named web-cam is presented
in Figure 3.12. This service aggregates the web-cam functionalities for providing
a picture stream and information about the movement in the room, providing an
aggregated functionality motionprogram. This functionality can be used by other
services or software. The number in the brackets behind the provides relation
represents the cardinality of the functionality. In this case “-1” indicates that this
functionality as a resource can be used by an indefinite number of other services.
The cardinalities are discussed more thoroughly in Section 3.6.3.

Apparently the services can be developed and defined so that they wrap the
functionalities of the devices. But services can also be developed to use other services
and offer an additional value for other services or for eHome inhabitants directly.
Figure 3.13 depicts a Person Detector service for tracking a person from room to
room. This service definition requires the described motionprogram functionality
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Figure 3.12: The specification of the Motion Controller service, which uses a web-
cam to detect movement.

and switching functionality5. These functionalities are combined by this service
to offer person detection functionality. The person detection functionality can be
used directly by the Music Follows Person service (see Figure 3.14).

The two required functionalities are used by the Person Detector service in
the following way: when the switch is pressed, the person tracking is activated
and the tracking itself is done via the motionprogram functionality offered by the
Motion Controller service (see Figure 3.12). The Motion Controller service supplies
the Person Detector service with image data, which can be processed to track the
person under consideration.

Figure 3.13: The specification of the Person Detector service, which tracks person
movements in the eHome.

Figure 3.14 describes the example of the Music Follows Person service needed
by the bachelor living in the five room apartment. This service offers the music
follows person functionality the bachelor needed, i.e. this service offers its func-
tionalities directly for the inhabitant. To offer this functionality, the Music Follows
Person service requires not only the person detection functionality but also a sound
routing functionality soundroute. It means that if the person is detected in a room,
the sound stream assigned to this person is routed into this room. The person
detection functionality is provided by the Person Detector service. It is obvious
that there is also a service offering the soundroute functionality. However, neither

5switching functionality refines the detection functionality.
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this nor the on/off Switching service6 offering the switching detection functionality
required by the Person Detector servicewill be described in this section.

Figure 3.14: The specification of the Music Follows Person service.

As we can see, the services are designed so that they can be composed to enable
the reuse of the service software. The service composition is done via the functionali-
ties. The functionalities represent the abstraction layer which provides the necessary
flexibility needed for the service composition done during the configuration phase of
the SCD-process (see Section 3.6.3).

The three presented services describe one part of the composition tree. The
lowest level Motion Controller service controlling the web-cam device is used by the
Person Detector service, and the latter one is used by the Music Follows Person
service. These dependencies are explained in sections 3.6.3 and 3.6.5.

Up to this point, the activities in the specification phase have been of general
nature. It means that the specification of functionalities, device definitions and
services can in general be applied for every particular home. The next activities
described in this section are specific for every single eHome considering the home
environment and the customer requirements.

Specification of the Particular eHome

The specification phase of the SCD-process covers the specification of the eHome
environment addressing the environment context of the eHome model. The specifi-
cation of the particular eHome by the home owner himself or some service provider
makes sense after the functionalities, device definitions and services have been spec-
ified by the device manufacturer, service provider or other parties. Hence, executing
the SCD-process to create an eHome has clearly the goal to have the eHome services
running in the living space.

The specification of the home environment has the objective of modelling and
defining the surroundings for the running eHome services. Modelling of the environ-
ment begins with specifying the floor plan of the eHome, the rooms, doors, windows
etc. (see Figure 3.9) – the locations, sub-locations, and location elements (see the
environment context in Section 3.5.4).

Figure 3.9 shows a floor plan of our explanatory example (see Section 3.6.1).
The figure depicts the eHome environment from the environment context, with six

6The Switching service is depicted in Figure 3.18.
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locations: Hall, Bedroom, Bathroom, Living-room, and Kitchen-corner as a sub-
location of the Living-room7. The Hall has a location element Entrance Door, but
also location elements (doors in this case) connecting it to the other three locations.

This example corresponds to the environment context of the eHome model (see
Section 3.5.4), where an Environment class has the contains relation to the Loca-
tion class and Location class has the contains relation to the LocationElement
class. This example includes the sub-location concept, but no devices modelled in
the environment. The device modelling will be addressed in the next section in the
scope of our example, the bachelor’s eHome environment. Although the example
does not include the already existing devices in the bachelor’s apartment, they can
also be modelled beforehand in the specification phase of the SCD-process. The
configuration phase then includes the devices in the configuration of the eHome.

The specification phase consists of the service selection activity. The home-owner
has to select the services he/she likes to have in his/her eHome. In our example,
the bachelor would like to have the Music Follows Person service in his apartment.
The result of this selection must be captured in the model. Figure 3.15 presents
the same sample environment information as Figure 3.9, but with another layout
for the objects under consideration. Additionally, it presents the service selection
information – the Music Follows Person is selected for the Living-room.

Figure 3.15: The Music Follows Person service is selected for the living-room.

In our example, the bachelor wants to have the Music Follows Person service.
This service is selected and it is also determined in which room the service will be
running in. For the sake of simplicity, Figure 3.15 shows only the case where the
service will only be running in the living-room which is not the case in the complete
example described in Section 3.6.1. The same figure shows the connection between

7The Kitchen-corner sub-location of the Living-room will be considered as a part of the example
for the specification phase but not in the following process phases since it provides no additional
explanatory value.
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the Living-room and the Music Follows Person objects. This corresponds to the
offers relation between the classes EnvironmentElement and Service in the service
context (see Figure 3.5 in Section 3.5.4). The fact that the Music Follows Person ser-
vice is selected is presented by the connection between the Selected Services and
Music Follows Person objects corresponding to the hasActive relation between
the Environment and the Service classes in the service context (see Figure 3.5 in
Section 3.5.4).

Although Figure 3.15 describes the situation where the Music Follows Person
service is selected only for the living room, we assume that the service will also
be run in the bedroom and in the bathroom. Thus, similar connections between
the Music Follows Person object and objects Bedroom and Bathroom should be
present, but are omitted to simplify the figure. This note is important since in the
next section about the configuration phase of the SCD-process we assume that the
service is running also in the two other rooms.

3.6.3 Changes in the eHome Model Instance Structure During the
Configuration Phase

The aim of the configuration phase is to create a configuration of the eHome system.
The configuration phase is performed automatically. The resulting configuration is
deployed into the eHome, initialized and executed. The configuration phase is per-
formed in respect to the selected services in the specification phase. The automatic
configuration is handled in detail in [Sch05b].

During the configuration phase of the SCD-process, the eHome model instance
is complemented with the following parts:

1. necessary devices are added into the environment context (see Section 3.5.3)
needed to put the eHome system configuration into the practice according to
the services present in the configuration.

2. the lower level service instances are added into the service instance context (see
Section 3.5.5) being driver components for the devices in the eHome. These
services provide the functionalities offered in reality by the devices and required
by other higher level services.

3. necessary service instances are created according to the selected services. The
service instance is the instance level entity for the corresponding service. Ser-
vice instances are necessary since they differ from eHome to eHome. The
instance structure is composed according to the functionality requirements.
This is done recursively by solving the overall dependency problem for the
selected but also for the lower level services. The result is a service instance
graph (see Figure 3.16), in other words, eHome system configuration. This
graph has the instances of the selected services as roots. The leaves are typi-
cally the service instances controlling the devices directly or providing system
resources.

As mentioned, the configuration of the eHome system is done automatically.
This fact is the key-point of the whole SCD-process since the central idea behind this
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process is to minimize the overhead to set up an eHome. This is achieved through
the reuse of the eHome service software, by mere composition and configuration
of the software components, and automation of the configuration and deployment
of the eHome system. The SCD-process should brake the excessive price barrier
concerning the eHome software on the home automation market, in contrast to the
current situation where every eHome establishment has been a standalone software
development project like described in [inH05, T-C05].

We discussed in Section 3.6.2 that the standard policy for the service selection
in the eHome is to assign service to a specific location or multiple ones. Thus, the
service context is automatically complemented with devices and the corresponding
device attributes necessary for the services running in the locations. Figure 3.16
illustrates the result of the automatic configuration activity in the example case
where the Music Follows Person service is desired in the living-room, bedroom, and
bathroom.

Figure 3.16: The necessary devices in the eHome environment supporting the
Music Follows Person service.

There are three new devices added for every room. The web-cam for person
tracking, the on/off switch to start and stop the service and the sound device for
sound playback. All devices have also attributes. For example, in the case of the
web-cam, it has the camera number to address it over the USB connection. The
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attribute assignments have to be done by hand during the process. But this is
inevitable in any configuration process. It might become redundant if the latest
research results in the fields of service and resource discovery are integrated into the
SCD-process.

If some required devices are already present in the locations, they are reused in
the configuration. It is also possible to choose the alternatives during the configura-
tion phase. This is done, if the alternatives are present and the person triggering the
automatic configuration wants to be aware of the alternatives. Last but not least, it
is also possible to configure the services only according to the devices present in the
eHome. Devices are in this case as the preconditions for the service configuration.

It is constructive from Section 3.6.2 and figures 3.14, 3.13, and 3.12 that the
devices added to the configuration are not directly usable by the Music Follows
Person service, but there are other services present in the configuration offering
necessary functionalities for the Music Follows Person service. This issue is addressed
in the service instance context, which expresses the runtime configuration of the
eHome services.

To be accurate, the service instance context (also noted as service object context)
is complemented with five service instances:

1. the Motion Controller service instance controlling the web-cam,

2. the Switching service instance controlling the on/off switch,

3. the Person Detector service instance using the later two,

4. the Sound Router service instance controlling the sound device,

5. the Music Follows Person service instance using the Person Detector service
instance and Sound Router service instance.

The service instance configuration to offer the Music Follows Person service only
for the living-room in our exemplary case, is depicted in Figure 3.17. For simplicity
the figure presents only a fragment of the complete service instance configuration
graph. This fragment covers the service instances required to offer the Music Follows
Person service only in the living-room of apartment in our example. The similar parts
of the graph are instantiated actually for every location where the Music Follows
Person service is offered. In our case: living-room, bedroom, and bathroom. The
service instances are noted with the - object extension in their names. The uses
and controls relations are respectively denoted with the uses and controls edges
in the configuration graph. The attributes of the service instances are indicated
with attr edges. The edges relating attributes to the devices but also the device
affiliation with locations are not labelled.

The configuration like the one in Figure 3.17 is generated automatically. The
goal by the automatic service composition is to find the service instance dependency
graph to fulfil the functional requirements of the top-level services selected by the
customer. During the composition the functional requirements of the services and
functionalities provided by the services are considered. The dependency graph is
constructed using the uses self-relation on the ServiceObject class – see the service
instance context in Section 3.5.5.
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Figure 3.17: The fragment of the service instance configuration graph.

For example, let us consider the path (see Figure 3.17) in the service instance
configuration graph: Music Follows Person object using Person Detector object
using Motion Controller object which controls the Webcam device. This path can
be derived from the functional dependencies in the service context by considering
the following dependencies: the Music Follows Person service (see Figure 3.14)
requires person detection functionality, the Person Detector (see Figure 3.13) ser-
vice provides person detection functionality and requires motionprogram function-
ality, the Motion Controller service (see Figure 3.12) provides the motionprogram
functionality and controls the Webcam device.

This example illustrates how the service instance dependency graph is con-
structed in the service instance context over the uses relation on the ServiceObject
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class. It also gives an idea of the role service functionalities play during the auto-
matic configuration. The services can have three types of functionalities related
to them: required functionalities, optionally required functionalities and provided
functionalities. The required and optionally required functionalities express the re-
sources needed for the service to enable the execution of the service. The provided
functionalities are the resources the service provides during its runtime. This kind of
functionality division enables the service composition on the functional abstraction
level. It enables loose coupling between the services and also selection between the
alternatives, since the same functionality required by a service can be provided by
several other services. The optional requirements create additional diversity in the
service composition.

The cardinalities on the service functionalities are the means for applying con-
straints on the resources offered or required by the functionalities. The cardinalities
are defined for the service functionalities during the specification of the service by the
service provider who designs and/or implements the specified service. For example,
the Motion Controller service provides motionprogram functionality with cardinality
“-1” (the number in the brackets behind the provides relation in Figure 3.12). For
the service composition, it means that this resource can be used by infinite number
of services at a time.

We can also consider the example, where the Switching service controls a toggle
switch with one button. It is reasonable to assume that this switch can be used
by only one service at a time to avoid conflicts appearing in the case of the shared
resource. Therefore, the controller service for this switch must offer the switching
functionality with cardinality “1”. This type of a service is visualized in Figure 3.18.
This example implies that if there is more than one service installed in the same lo-
cation requiring the switching functionality, there are also a corresponding number
of service instances added into the service instance graph, and also a corresponding
number switching devices added into the environment. We can consider a illumina-
tion control service in the eHome requiring the switching functionality besides the
Music Follows Person service. In this case, there must be also two switches present
in the corresponding rooms of the eHome and two Switching service instances in the
configuration.

The cardinalities are also used by the service requirements. The cardinality at
the required service indicates the quantity of the functionality required. Relying
again on the Switch service example (see Figure 3.18), we can reckon with a service
controlling the two level heating system of the room. This service would require
switching functionality with cardinality “2”, since the first switch is used to turn on
and off the radiators on the walls and the second switch is to turn on and off the floor
heating. If this kind of service is installed in the location, there are two Switching
service instances added into the configuration and respectively two toggle switch
devices into the corresponding location. If some other Switching service would offer
the switching with the cardinality “2” or greater than two, the heating control
service would need only one instance of this kind Switching service. If the Switching
service is offering the switching functionality with the cardinality greater than
two, the same instance can be used even by other services requiring the switching
functionality.
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Figure 3.18: The specification of the Switching service to control a toggle switch.

The idea of automatic configuration is simple because of the functional abstrac-
tion layer it uses. But it still lacks the rigorous mechanism for composition ver-
ification on the software component level. The automatic configuration does not
check formally, if the combined components actually can work together and will
give a reasonable result during runtime. This could be done using parametric con-
tracts [Reu01] – the additional white-box description of the black-box software com-
ponents describing the resource requirements, used communication protocols and
logical behaviour. This kind of addition would help by the composition verification
and the integration of the components produced by completely different software
manufacturers without any additional software development.

3.6.4 Changes in the eHome Model Instance Structure During the
Deployment Phase

The deployment phase of the eHome system does not affect the eHome model in-
stance greatly. This step focuses on installation of necessary software components
on the service gateway to enable the selected and configured eHome services in the
eHome. Thus, there are only two aspects changed in the eHome model:

1. Installation is executed according to the service instance context of the eHome
model. All service instances present in the configuration are installed onto the
gateway. After the installation the corresponding service software components
are registered in the eHome model instance at the corresponding service in-
stances objects (see the class ServiceObject in Figure 3.7). This is the first
change in the eHome model instance. Since all the installed software compo-
nents must implement the EhService interface the registration is realized via
the has runtime component relation between the ServiceObject class and
EhService interface (see Figure 3.7).

2. After installation the services are initialized and executed. The services are
initialized recursively according to the usage graph of service instances. During
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the initialization the eHome model instance is complemented with the state
information for the service objects. This is the second change in the eHome
model instance. The necessary State class instances are added for the class
ServiceObject instances via the has relation (see Figure 3.7).

The service instance graph presented in Figure 3.19 complements the service
instance graph depicted in Figure 3.17 with state objects. The Switch service object
has the state switch with value 1 or 0 indicating, if the toggle switch device is in
the state on or off. The Person Detector service object has the state person with
the value to signalling which predefined person is in the room8.

3.6.5 Changes in the eHome Model Instance Structure During the
Runtime of the eHome System

Likewise, the deployment phase of the SCD-process and also the runtime of the
eHome system does not change the structure of the eHome model instance drastically.
During the runtime, only the state information of the eHome service instances is
changing mostly. But also the inhabitant information is changed during runtime of
the eHome system. This results from the fact that the eHome services are context-
aware services. The eHome services use the eHome model instance

1. to get the location information they are operating on,

2. to get the state information of other services,

3. to communicate the state information to other services,

4. to get the dynamically changing inhabitant information in the eHome.

5. to send messages/ control other services over the service instance and their
state objects.

Since the eHome model instance is available for the services during the runtime of
the eHome system, the services have at their disposal the whole information encap-
sulated into the eHome model instance. For the services the most important of the
eHome model contexts are the ones containing environment, service, service instance,
and inhabitant information. The environment context provides the eHome environ-
ment information. The service context provides the general information on services.
The service instance context provides the runtime information of the services. The
inhabitant information provides useful information for the services concerning the
inhabitant locality and preferences.

We will concentrate on the service instance context since this context enables the
communication and control flows for the services during the runtime of the eHome
system. The communication and control is performed via the states of the services.
For example, one service can be a listener to a state of another service, thus being
aware of the changes of this state.

8There are additional states omitted in Figure 3.19 since the figure would be uncomprehensive
otherwise. There should be states also by other service instance objects, and in some cases even
more than one.
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Figure 3.19: The structure of the eHome model’s service instance context during
runtime of the eHome services.

Figure 3.19 illustrates our example where the bachelor wants to have a Music
Follows Person service at his home. According to the example the service Person
Detector listens to the state switch of the service Switch. If the service Switch
changes its state switch, the Person Detector service can act correspondingly by
starting the person detection procedures and setting its person state, since the
change in the state switch signals that the person tracking should be started. The
Music Follows Person service listening to the changes of the person state object
can then route the music according to this information into the corresponding room.
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3.7 Summary

This chapter gave an overview of the eHome systems and SCD-process for eHome
systems. We discussed thoroughly the eHome model and its structure – how it
reflects the aspects of the eHomes in reality. We also introduced the concept of the
eHome model instance, how it is involved in SCD-process and which are the changes,
i.e. transformations performed on this model instance during the process.

The next chapter we will handle the eHome model instance transformations dur-
ing the SCD-process in the context of the eHomeConfigurator tool. This tool is
the general instrument to support the SCD-process. Since the author of this thesis
has been one of the main developers of the eHome model and the eHomeConfig-
urator tool, we will handle two main aspects of the tool. Firstly, we will discuss
the architecture and development of this tool. Secondly, how this tool supports the
SCD-process, particularly from the eHome model instance’s point of view.



Chapter 4

The Tool Support for the
SCD-process

The SCD-process relies heavily on the tool support. There are tools supporting
all the three phases of the SCD-process and the necessary eHome model instance
transformations during these phases. The development of the tools supporting the
process is run in the scope of the open-source eHomeConfigurator project [NSM04].
The project has been active since the beginning of the year 2004. The roots of
the project lie in the lab-course [Nor03] conducted at our Department of Computer
Science 3. The author of this thesis was one of the students participated in the
lab-course and one of the three main contributors to the development of the early
prototype for the eHomeConfigurator tool. Over ten different developers have con-
tributed to the project during the entire course of it, but the core of the development
team has been so far the author of this thesis, his scientific advisor Ulrich Norbisrath,
and another graduate student Adam Malik.

The open-source characteristic of the project is chosen to attain better possibil-
ities for distribution of the developed software, to find partners and contributors in
the private and commercial fields. The project is licensed with GNU Lesser General
Public Licence (LGPL) [GNU99]. This licence supports the free distribution of the
source code and the software itself, but allows also the commercial entities to link
their proprietary products with our software. The aim of our licensing policy is to
reach:

1. the developers in the open-source community,

2. the end-users who use and test this open-source software,

3. companies active in the fields of the home automation and interested in coop-
eration with the eHomeConfigurator project and eHome research group.

The tools and software developed in the project are united into one general
eHomeConfigurator tool. The unification has a purpose to have one tool supporting
the entire SCD-process throughout its phases. The eHome model covered in the
previous chapter is also considered to be a part of this tool. The following sections
give an overview of the eHomeConfigurator tool. We will discuss the structure of the
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eHomeConfigurator and implementation of its separate modules in more detail. We
will also consider the tool in action by discussing how this tool supports the example
introduced in Section 3.6.1. This example will be considered from the perspective of
the eHomeConfigurator tool supporting the SCD-process. The tool is used to carry
out the specification of the bachelor’s home environment, configuration of the Music
Follows Person service and deployment of this service into the bachelors home.

4.1 The eHomeConfigurator Tool

The research work of the eHome group on the SCD-process has been going on more
than three years. During this time, there have been several different prototypes and
solution ideas for the tool support. Initially there was a tool chain designed (see also
Figure 4.1), which consisted of:

1. Protégé [NFM00], the open-source tool used for the specification of the eHome
ontology, developed outside of the eHome group;

2. ComponentPreselector [Kre04], the tool supporting interactive component se-
lection for the eHome system;

3. DeploymentProducer [Skr04], the tool importing the initial configuration doc-
ument and producing the XML complete configuration document, i.e. the
installation instructions as deployment configuration;

4. RuntimeInstancer [Kli04], the tool installing software referenced in the XML
deployment configuration document onto the service gateway.

This was a restricted and specific solution limited by the chosen technologies and
integration approach. The model used by ComponentPreselector was a knowledge
base with a very specific structure lacking generality. The integration between the
tools in the tool chain was achieved by the XML document production and trans-
formation approach. The DTDs of these XML documents were complex and highly
specific for the OSGi platform. The initial configuration document had to be written
and edited by hand.

The tool chain depicted in Figure 4.1 worked as follows. The knowledge base
(eHome ontology) was designed in Protégé and had to be changed for every specific
home. The initial configuration consisting of the device and functionality informa-
tion was written by hand in XML. The initial configuration document was refined
during the SCD-process by the cooperation of the DeploymentProducer and Compo-
nentPreselector, where the latter tool was using the eHome ontology. The resulting
complete configuration1 was then installed on the service gateway by the Runtime-
Instancer.

The current approach does not use knowledge base related technologies but the
classical object-oriented technology and the eHome model to support the SCD-
process. The reasoning behind the selection of the technology has been given in
Section 3.4. The integration between tools supporting the SCD-process is done us-
ing the eHome model itself. In this case, the eHome model as the communication

1I.e. the deployment configuration.
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Figure 4.1: The tool chain supporting SCD-process before the eHomeConfigurator
project.

medium does not only support the SCD-process, but also the runtime of the eHome
system (see Section 3.6.5). There is no need for the XML parsers and un-parsers and
complex XML-reflect API structures to be dealt with during the tool development.
The eHome model is the unified entity for the data exchange and refinement having
a fixed and simple communication interface. The object-oriented eHome model gives
larger possibilities to extend the tools supporting the SCD-process beyond their cur-
rent scope if necessary. The complete model structure is available for tools using
it and for the future tools requiring the access to the eHome model instance (see
Section 4.2).

Figure 4.2 illustrates the structure of the eHomeConfigurator tool. The eHome-
Configurator tool has four main modules. The three: Specificator, Auto-Configu-
rator, and Deployer support each directly the respective SCD-process phase. The
fourth module: DataHolder is responsible for the encapsulation of the eHome model
instance and is used by all of the other three modules.

In general, the aim of the eHomeConfigurator is to support the SCD-process,
i.e. to provide to end-users an interface to the eHome model instance. The eHome-
Configurator tool is used to carry out the changes on the eHome model instance
throughout the entire SCD-process. The tool is also responsible for the persistency
of the model instance.
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e H o m e C o n f i g u r a t o r
Specificator AutoConfigurator Deployer
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visualise
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Figure 4.2: The general architecture of the eHomeConfigurator tool according to
the SCD-process.

The eHomeConfigurator tool has been developed in the way that it can be run
as a standalone application. This enables the work on the eHome model instance
separately from the eHome system. The eHomeConfigurator can also be started as
a component bundle in the OSGi framework. This allows changing and monitoring
the eHome model instance during the runtime of the eHome system making the
eHomeConfigurator an integral part of this system.

4.2 The Implementation of the DataHolder Module

This section focuses on the DataHolder module, its functions and structure. Data-
Holder operates as the container for the eHome model instance. It has a firm inter-
face to access the model instance. The main functions of the DataHolder are: saving
the model into a file with a given name, loading the model from the file-system,
offering redo and undo functionalities for changes on the model instance. These
functions are implemented using the respective features provided by the CoObRA
framework [Sch03]. We refer to the storing and versioning mechanism of CoObRa ob-
ject repository as CoObRa persistency. CoObRa framework provides also the model
instance monitoring features by following the JavaBeans specification [Sun97]. For
example, this allows the eHome services to “tap into” the model as property change
listeners on the objects in the model instance, so that services can respond to the
eHome model instance changes immediately.

Besides the reasoning given in Section 3.4 for our technological and instrumen-
tal choices, there is one more reason behind choosing the Fujaba tool to design the
eHome model. This is because the CoObRA framework is linked with Fujaba in the
way that Fujaba is able to generate the code for the CoObRA persistent classes.
This is important because in despite of the powerful features CoObRA framework
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offers, the usage of the framework is not as straightforward as a developer would
wish. In other words, the development of the CoObRA persistent model and its
classes is complex. The implementation of the designed classes has to correspond
to the CoObRA specification considering the property change mechanisms. Fortu-
nately, using Fujaba hides this complexity from the developer. It is possible to make
the designed classes in the model CoObRA persistent with one click in Fujaba. The
Fujaba-generated Java code for the classes contains thereupon the code correspond-
ing to the required property change mechanisms. This makes the application of
CoObRA framework straightforward.

The DataHolder is designed in the way that it can be used by several different
tools at a time. If the eHomeConfigurator runs as an OSGi bundle:

1. the Specificator module (see Section 4.3) and Deployer module (see Section 4.6)
can use the eHome model instance simultaneously.

2. the eHome services can use the eHome model instance too, because also the
services are OSGi bundles.

3. the same DataHolder module can be used by several Specificator modules.

Since CoObRA is an object repository functioning like concurrent versioning
system (CVS) for objects or object-oriented database CoObRA, it enables the work
of different DataHolders on the same model instance. This functionality is not used
by the eHomeConfigurator project yet, but can be taken under consideration to have
an alternative mechanism allowing distributed working on the same eHome model
instance.

4.3 The Implementation of the Specificator Module

The Specificator module is the user interface for the entire eHomeConfigurator tool
and it supports the specification phase of the SCD-process. We will begin describing
the user interface of the Specificator and proceed describing the important structural
details of the Specificator module. The concrete relation between the user interface
and the SCD-process will be given in Section 4.7.

The graphical user interface (GUI) of the Specificator module is developed using
the Java Swing application programming interface (API). The GUI consists of the
main application frame, a menu bar, a tool bar, and a tabbed panel (see Figure 4.3).
The menu consists of general selections for different actions like redo, undo, save,
load, or zoom on the view. The tool bar represents mostly the same activities but
there are also some additions. For example, the buttons for the wizards related to
the automatic configuration (see Section 4.5), the button for launching the Deployer
module (see Section 4.6), and the activity to start the Dynamic Object Browsing
System (DOBS) [GZ02].

DOBS is a system visualizing the Java object heap. This allows the developer
to browse the object structures handled during the runtime of the Java virtual
machine. For example, the selection of the Music Follows Person service is depicted
in Figure 4.3. After pressing the DOBS button one can see the service object in the
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Figure 4.3: The screen shot of the eHomeConfigurator tool – the Specificator
module.

DOBS editor with all its field values and also methods. It is possible to browse the
other objects related to this service object in a similar way. The DOBS tool provides
advanced visual features for debugging and information acquisition on the program
and model structure.

The most important components of the GUI are the tabs on the tabbed panel.
There are necessary editors and information panels located on the tabs for the eHome
model instance manipulation. There are two types of tabs: the editor tabs (handled
in the scope of this thesis, see an example on Figure 4.3) and the information panels
(see for more information in [Mal05] and an example on Figure 4.6). For every
eHome model context (see Section 3.5) except the inhabitant context, there is one
graphical editor tab to work on the respective context. This sums up to five different
editors. In Figure 4.3 the Music Follows Person service is visualized in the service
editor’s graph panel.

The JGraph API [Com] is used to visualise the eHome model contexts on the
editor tabs. One could propose that the visualisation could be done using DOBS
itself, but DOBS lacks the visualisation features needed by the eHomeConfigurator
tool, which is used by the end-users. JGraph offers prepared layout algorithms
and extended control on the layouts of the graphs and is specially designed for
visualisation of graphs.
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The development of an editor consists of two main steps. The first step is to
create the translator traversing the eHome model instance according to the model
context. The translator visualizes the model context in the graph panel in the editor.
Secondly, the activities necessary for the transformations on the model instance are
made available to the user. This is done by creating a button into the editor for
every required activity and creating alternative drop-down menu for activities, which
appears if the right mouse button is clicked on the model object in the graph panel.
By pressing the button in the editor or using alternatively the drop-down menu, the
input form corresponding to the activity’s parameters has to appear together with
buttons for execution and cancellation of this activity.

The layout of the editors is mostly the same2. Thus, the development of an ed-
itor means only sub-classing the EditorPanel class. For example, for environment
editor, the EnvironmentPanel class extends the EditorPanel class. In general case,
the translators for the JGraph panel and optionally the JTree panel are derived
from the Translator class. The translators are completed with graph traversing
code. Then, they are attached to the class extending the EditorPanel class. In
the case of environment editor there is a JGraph translator implemented for the
EnvironmentPanel and the visual part of the editor is ready. The activity buttons
and corresponding input forms are created dynamically by the generic activity invo-
cation mechanism. The creation of the translators and using of the generic activity
invocation mechanism will be handled in the next sections.

The development of an editor can be seen as the application of the framework,
which is designed following the framework design principles [GHJV95]. The common
behaviour for the editors is generalized into abstract classes which form a mechanism
performing as an editor in the Specificator tool by cooperation. Thus, the develop-
ment of the particular editor requires sub-classing of predetermined abstract classes
in the tool and coding the specific behaviour into the corresponding sub-classes to
attain the specific properties of the desired editor.

4.3.1 The Translators in the eHomeConfigurator Tool

The translators are the bridges between the eHome model and other Java tech-
nologies. The translators are used to create the JGraph, JTree, or OWL structures
corresponding to the eHome model instance’s structures (see Figure 4.4). The trans-
lators are mostly used for the visualisation of the eHome model, i.e. translating the
model instance’s structures into JGraph and JTree structures. At the moment there
are up to two translators involved for every editor: the JGraph translator and the
JTree translator. The methods in these translators traversing the specific context
in the eHome model are hand-coded. The idea to automate the translator develop-
ment, to avoid the manual coding of the translators is one of the key topics of this
thesis.

The translators were also used to transform the eHome model’s and the model in-
stance’s structures into the OWL structures using the Jena version 2 Semantic Web
API [McB04]. The OWL translators were used to integrate the eHomeConfigurator

2The tree component and the button bar on the left, the graph panel on the right, and input
form appearing on top – see Figure 4.3.
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<eHome:implementedDeviceDefinition>
 <eHome:DeviceDefinition rdf:nodeID="A47">
  <eHome:hasDeviceFunctionrdf:nodeID="A4"/>
 <eHome:serialNumber>1</eHome:serialNumber>
  <rdfs:label>fire detector</rdfs:label>
  <eHome:manufacturer></eHome:manufacturer>
 </eHome:DeviceDefinition>
</eHome:implementedDeviceDefinition>

1. JGraph

2. JTree

3. OWL and
    deployment

Figure 4.4: The translators in the eHomeConfigurator tool.

tool in early stages of the project with the ComponentPreselector and Deployment-
Producer tools developed in the frames of [Kre04] and [Skr04]. This integration
approach failed because the implementation overhead to modify the ComponentP-
reselector and DeploymentProducer was too great. This failure is also a motivation
for the automated translator development.

There was a translator created to generate the XML deployment configuration
document from the eHome model’s structures [Akh05]. This translator integrated
successfully one of the older versions of the eHome model instance and RuntimeIn-
stancer tool. Thus, contributing a vital feedback for the development of the Deployer
module (see Section 4.6) of the eHomeConfigurator tool.

The entire translator development follows the template design pattern [GHJV95].
This means that the common properties and behaviour of the translators have been
gathered in the Translator super class excluding the specific behaviour of the par-
ticular translators. In this way every new translator has to inherit from the Trans-
lator class and implement a protected abstract void construct() method to
traverse the necessary parts of the eHome model. For example, the environment
editor has an EnvironmentTranslator class which implements the specific traver-
sal routines in the construct() method to process the environment context of the
eHome model.
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The Translator class also provides a number of useful methods for the devel-
opment of the specific translators and encapsulates the complexity of the JGraph
API. In this way, the development of the translators used in the tool is made as
straightforward as possible and contains as less repeated coding as possible.

4.3.2 The Generic Activity Invocation Mechanism

The generic activity invocation mechanism was inspired by the Upgrade frame-
work [Jäg00] implementing a similar method invocation mechanism. This mech-
anism was developed in lab-course by Erhard Schultchen along with the first version
of the Specificator [Nor03] and was extended by the author of this thesis to cope
with void methods and inheritance of Java classes [NSSK05].

The generic activity invocation mechanism in the Specificator module has the
goal to make the activities of the eHome model, i.e. the methods of the model’s
classes, available on the eHomeConfigurator GUI. This means that the methods of
the classes in the model are made available by creating the necessary buttons and
input fields of the GUI dynamically. The idea behind the activity invocation is quite
simple. The necessary methods are described within the XML configuration file. The
configuration file is read at the tool start-up. The buttons are generated dynamically
for the editors according to the configuration during the runtime of the tool. The
method invocation is performed using the Java Reflection API [FF04]. First, we will
describe the XML configuration, then the button and input form generation, and in
the end of this section, the method invocation itself.

The example for the XML configuration of the generic activity invocation mech-
anism can be seen in Listing 4.1. The configuration XML consists of class descrip-
tions according to its DTD. The class description contains the descriptions of the
methods of this class, which are desired to appear in the GUI. Listing 4.1 gives an
example of the XML configuration for a method public Environment newEnvi-
ronment(String name, EnvironmentRoot root) of the class Environment. This
method creates a new environment object and links it with the environment root
object.

A developer of the Specificator module wants to see the button for this method
with the label Button Name in the editor ENVIRONMENT_EDITOR. If the user presses
this button, the input form appears in the top side of the environment editor (similar
to Figure 4.5) to get the values for the arguments name and root. The developer
wants to see on the input form some descriptive information for the first argument
and wants the second argument to be fixed as one specific object/element in the
eHome model instance. The XML configuration for the Environment is described
in Listing 4.1.

Listing 4.1 gives an overview on the tags used in the XML configuration. The
tag CLASS defines which class is under consideration. The tag ACTIVITY describes
the method. The CONTEXTS tag contains the predefined list of the editor contexts
where the considered method is available as an activity. The tag PARAM describes the
argument of the method. The order of the arguments of the described method in the
configuration is determined by the method signature. The TOOLTIP tag captures the
tool-tip or description of the element specified by the tag containing this TOOLTIP
tag. Hence, the XML configuration mostly relates just the labelling and tool-tip
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information with the described method and helps to generate the input fields form
for the activity. We do not handle the type information of the arguments in the XML
configuration. The verification of the input fields together with the type checking
is done using the Java Reflection API, while the execution of the activity by the
activity invocation mechanism.

1 <CLASS name="Environment">
2 <ACTIVITY name="newEnvironment" label="New Environment">
3 <TOOLTIP >Create new environment </TOOLTIP >
4 <CONTEXTS >
5 <ENVIRONMENT_EDITOR/>
6 </CONTEXTS >
7 <PARAM label="Name">
8 <TOOLTIP >The of the environment.</TOOLTIP >
9 </PARAM>

10 <PARAM label="Environment root">
11 <VALUE type="fixed">
12 <REF key="ENVIRONMENT_ROOT"/>
13 </VALUE>
14 </PARAM>
15 </ACTIVITY >
16 ...
17 </CLASS>

Listing 4.1: The example for the XML configuration for a method handled by the
generic activity invocation mechanism in Specificator module.

Nevertheless, it is also possible with the VALUE tag to fix objects from the eHome
model instance as fixed parameters in the scope of the PARAM tags. In this case,
the corresponding input field is not enabled for editing like the “This-object” field
in Figure 4.5. Additionally, it is possible to describe the selection lists of predefined
parameters in the VALUE tags. The input field is either a drop-down menu or editable
drop-down menu for a selection list.

We consider the return values not to be relevant in the activity configuration
for several reasons. This mechanism is designed to satisfy the GUI needs and the
end user would not get a lot information out of some object returned. Most of
the activities involved in the model have the direct impact on the structure of the
model instances, thus the result of the activity invocation is directly visible in the
graph panel of the corresponding editor. Nevertheless, if exceptions appear, the
exception information is displayed with dialogue windows to notify the user about
malfunctions.

At the start-up of the eHomeConfigurator tool the Specificator module reads
the configuration XML file and creates the buttons for static methods onto the left
side panel of the corresponding editors. In Figure 4.5 the static method of the class
DeviceDefinitionRoot creating the device definitions is represented by the button
New DevDef.

The non-static activities are also represented by buttons, but separately from the
buttons for the static activities. The buttons are displayed according to the selection
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Figure 4.5: GUI elements for the public Attribute createAttribute(String
name, String byDefault) method in the DeviceDefinition class.

performed in the graph panel. If the selection changes, the buttons are generated
accordingly on the left side of the editor. In Figure 4.5, there is a DeviceDefin-
ition object selected in the graph panel. In the case of the selection event, the
buttons appear on the left side panel corresponding to the XML configuration and
these buttons represent available activities for selected object in this editor. In Fig-
ure 4.5, there are four buttons for the selected DeviceDefinition object although,
the DeviceDefinition class has nearly thirty public methods, which could be made
available in this editor.

Figure 4.5 shows the New Default Attribute button. This button corresponds
to the method public Attribute createAttribute(String name, String by-
Default) from the class DeviceDefinition. By pressing this button the input
form appears with: corresponding input fields, description of the selected object
(indicated as This-Object), and buttons for execution and cancellation of the ac-
tivity on the upper side of the editor. This behaviour is the same for static and
non-static activities, i.e. static and non-static methods. The button labels, number
of input fields and tool tips for this method are determined with quite a similar XML
configuration as described by Listing 4.1.

After the input form is filled with data, and the OK button is pressed, the method
corresponding to the activity is called on the object which is selected in the graph
panel. The number and the types of the input values are checked by the activ-
ity controller using the Java Reflection API. The activity controller also checks if
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the method exists for the corresponding object and the attribute values match the
method signature. If this validation returns with a positive result, the method is
executed on the object. If there is no exception thrown, the input form is removed
and the graph panel is refreshed in the editor. Otherwise, the exception information
is displayed on the pop-up dialogue window.

4.4 The Main Problem at the Specificator module De-
velopment

The editor development has been optimised by the underlying software design to be
as straightforward as possible having minimal overhead on coding. Still, there is a
problem remaining. The development of the editors is still not generic enough. The
frequent and severe eHome model changes require a great deal of maintenance work.
We do not consider the eHome model instance changes during the SCD-process and
runtime of the eHome system here, but the structural changes of the eHome model
itself.

During the eHomeConfigurator project, there have been at least eight bigger
structural changes in the eHome model. The model has been partly redesigned
during these changes. Every change requires manual recoding of translators. This is
error-prone, requires quite a high level of programming expertise and development
time. Luckily there already is some degree of genericity introduce by the design of
the editors and generic activity invocation mechanism. This problem is illustrated
in Chapter 2 of this thesis. Chapter 2 discusses an example about implementation of
the sub-location concept into the model, the steps for the translator reprogramming,
and adoption of the activity invocation configuration XML.

The translator-related development problem is tackled in the theoretic part of
this thesis (chapters 5, 6, and 7). We introduce the triple graph grammar (TGG)
based approach to develop generic bidirectional translators. In this case the trans-
lators are not hard-coded, but specified with special TGG rules. These rules are
interpreted during the runtime of the tool and provide the synchronisation mech-
anism between the eHome model instance and JGraph structures. The developed
mechanism is bidirectional: the specified translators synchronise transformations of
related models in both directions. The translators in the eHomeConfigurator are
unidirectional by just “exporting” the eHome model structures to other technolo-
gies. Our synchronisation approach also enables to propagate changes in JGraph
structures directly to the eHome model instance. (see Chapter 6).

4.5 The Auto-Configurator Module

The work on the Auto-Configurator module of the eHomeConfigurator is handled
in [Mal05] and [Sch05b], thus being out of the scope of this thesis. The Auto-
Configurator has the task to construct the service instance context (see Section 3.5.5)
according to the eHome services, which were selected during the specification phase.
The Auto-Configurator creates an eHome service configuration which can be de-
ployed into the eHome. There are corresponding wizards available to guide the user
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through the automatic configuration process, and corresponding launch buttons re-
side on the tool bar of the Specificator module.

The Auto-Configurator module represents the tool support for the configuration
phase of the SCD-process. This module embodies all necessary activities required
by the configuration phase. It automates nearly completely the whole configura-
tion process by narrowing the manual activities down to selecting the alternatives
and describing the attributes. The manual activities are supported by the wizard
available through the Specificator module.

The result of the configuration phase is the structure in the service instance
context of the eHome model instance. The generated structures express the runtime
configuration of the eHome services – which services are required, and how they
work together. These structures are the input for the deployment phase of the
SCD-process.

4.6 The Implementation of the Deployer Module

The Deployer module is designed and implemented to install the eHome system con-
figuration onto the service gateway at the eHome. This configuration is constructed
by the Auto-Configurator Module. The start-up of the Deployer module is the se-
quential activity to the automatic configuration. This marks the transition to the
deployment phase of the SCD-process.

The execution of the Deployer module is also possible over the Specificator mod-
ule’s GUI. There exists a button on the tool bar of the Specificator, which launches
the Deployer. The Deployer analyses the service instance context (see Section 3.5.5)
structure of the eHome model instance and performs for the installation the following
steps:

1. Determining the list of services which have to be installed. This requires
the traversal of the service configuration graph in eHome model instance’s
service instance context. The traversal is performed using the uses relation on
ServiceObject class (see Figure 3.7). The traversal is performed recursively
by following this relation between the service objects. For example, considering
Figure 3.17, the composed service list would contain Switching service, Motion
Controller service, Person Detector service, Sound Router service, and Music
Follows Person service.

2. Installing every necessary service from the list of services onto the service
gateway. The Deployer uses the features offered by the bundle context of the
OSGi gateway to install the service software onto the gateway. During this
step the installed bundle components are also registered in the Deployer module
for future handling. This means for example, that Deployer has references to
implementations of Switching service and Music Follows Person service

3. After installation of the services, every installed service is started in the frame-
work. Deployer tries to start all installed services sequentially. If some errors
occur, the cycle for starting the services is finished and started over by giv-
ing the framework more time to deal with probably unresolved dependencies
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between the services. This approach lacks of elegant handling of the resource
resolution, while starting the services assuming that the service configuration
constructed by the Auto-Configurator module is correct.

The installation and starting of the services could be also done using the bundle
listener (BundleListener interface) features provided by the OSGi framework
API, but this approach introduces particular class-loader problems. If the
bundle listener concept is used, the resource dependencies between the services
are probably still not solved correctly. It is because the installation events
might arrive in random and do not carry the resource resolution information.

4. The started services are registered in the eHome model instance. The Deployer
implements the service listener (ServiceListener) interface of the OSGi API.
This enables the Deployer to get the service events informing it about the life
cycle changes of the services. After a service has been started, the framework
sends the service registration event. Upon receiving this event the service is
registered at its corresponding ServiceObject’s in the eHome model instance
as the implementation for the service described by the particular ServiceOb-
ject. For example, the Music Follows Person object in Figure 3.17 has after
this step a reference to the implementation of the Music Follows Person service
installed on the service gateway.

5. All the eHome services are initialized with init() method of the EhService
interface (see Figure 3.7). In this additional initialization routine lies a flaw
in service design, which has to be addressed in future work. The initialization
requirement by the init() method for the service development should be
omitted and initialization should be implemented in the start method of the
eHome service Activator class.

6. Finally all the eHome services are executed in the eHome context with exe-
cute(ServiceObject so) method known from the EhService interface. This
provides the service with the information about eHome context. The Ser-
viceObject provides the information about other required services, the envi-
ronment, the states and attributes, but also the controlled devices, and the
abstract description of the service itself (see figures 3.6 and 3.7). During this
method-call the service can add the state information into the eHome model in-
stance by creating and relating the State class objects with the corresponding
ServiceObject instances (see the service instance context structure in Sec-
tion 3.5.5). For example, the Switching service object Switch on Figure 3.19
creates a state switch with value 1.

The services upon the execute method is called, call also often themselves
the execute method upon the services they are using. But this depends on
the implementation and is used by developers in the case the services placed
higher in the usage hierarchy need the state information of the used services.

The Deployer module is tested and works with two different OSGi implementa-
tions: a proprietary Prosyst mBedded server 5.x [Pro] and an open source imple-
mentation of the OSGi framework Knopflerfish [Kno04].
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4.7 The eHomeConfigurator in the Action

We will consider the eHomeConfigurator tool now in the scope of the example intro-
duced in Chapter 3, where the bachelor living in the apartment desires the Music
Follows Person service (see Section 3.6.1). As mentioned, the eHomeConfigurator
tool embodies the tool support for the SCD-process and the Specificator module is
the GUI for this tool. We will describe how the tool is used to support our example.
According to the SCD-process there is an editor available for nearly every eHome
model context to specify the necessary input information for the following phases
of the process. There are also corresponding trigger buttons and wizards for the
following configuration and deployment phase of the SCD-process. A more detailed
description regarding the tool support for this process follows in next subsections.

4.7.1 Specification with the eHomeConfigurator

In the considered example (see Section 3.6.1) the bachelor desires the Music Fol-
lows Person service. An external service provider has to specify the functionalities
required and provided by this services in the eHome system configuration. There
is a function class editor in the Specificator module to create and edit functional-
ity refinement trees like depicted in Figure 3.10. In fact, the descriptive figures in
sections 3.6.1 – 3.6.4 are all exported from the different editors of the Specificator
module3.

After the functionalities are specified the devices are next in turn. Devices are
specified using the device definition editor (see Figure 4.5) and can be specified by
device manufacturers or again by service providers. Services, their requirements and
features on the functional abstraction level have to be specified by service providers
in the service editor (the example is seen in Figure 4.3). The following specification
step is to describe the floor plan of the eHome in the environment editor. An example
of the floor plan for the bachelors apartment described in the environment editor
can be seen in figures 4.7 and 3.9. The floor plan includes the description of rooms
and their interconnections via doors, windows, etc. Additionally to the floor plan
the devices are specified, which are already included in the home and are planned
to be the part of the eHome system. The function, device definition, service and
environment editor address respectively the function, device definition, service, and
environment contexts of the eHome model (see sections 3.5.1, 3.5.2, 3.5.4, and 3.5.3).

The next specification step includes the service selection. This is done using the
service selection information panel in the Specificator module (see Figure 4.6). The
service selection requires the information where the service is activated and if it is
installed considering just the requirements of the service or additionally the optional
requirements [Mal05, Sch05b]. The selection information panel addresses the service
context of the eHome model (see Section 3.5.4).

3Specificator is able to export the graphics of the editors in scalable vector graphics (SVG)
format, joint photographic experts group (JPEG) format, and graphics interchange format (GIF).
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Figure 4.6: The service selection panel in the Specificator module.

4.7.2 Automatic Configuration of eHome Service Software with the
eHomeConfigurator

The specification phase of the SCD-process finishes with the environment speci-
fication and service selection activities. The process proceeds with configuration
phase which addresses the service instance context of the eHome model (see Sec-
tion 3.5.5). The automation is implemented in the Auto-Configurator module of the
eHomeConfigurator and supported by the corresponding wizard available through
the Specificator GUI [Sch05b]. Since the service selection is also added to the wiz-
ards, the first two windows of the wizard offer similar functionalities as the selection
information panel discussed above. In Figure 4.7, there is the second window of
the wizard, which gives additional selection options – where exactly the selected
service has to be available. In the bachelors example, he has selected the Music
Follows Person service to be installed into all of the rooms in this apartment, but
the hallway.

The wizard continues with the selection of the alternatives for possible devices
and service components. It can happen that some requirement of the service can be
satisfied by several services or devices. For example, one could use for person detec-
tion the cheaper USB web-cams or more expensive IP cameras. IP cameras should
be used, if a security service is installed in addition and it requires more elaborate
monitoring devices. The alternatives can be chosen per-room in the eHome, but
also simultaneously for the entire environment. The device and service attributes
are specified in the next wizard step4. This finishes the automatic configuration
requiring minimal amount of user interaction to obtain the information which can
not be obtained automatically.

4For example, the USB camera numbers to address web-cams in the case of our Music Follows
Person service or some e-mail address for the e-mail notification service used by the security service.
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Figure 4.7: The automatic configuration wizard in the eHomeConfigurator with
the environment editor of the Specificator module in the background.

The deployment editor of the Specificator module can be used to browse the
finished configuration. One layouted small piece of the configuration graph exported
from the deployment editor can be seen in Figure 3.17 and the deployment editor
itself in Figure 4.85. The deployment editor has its use also during the runtime of
the eHome system.

4.7.3 Deployment of the eHome Service Configuration and Moni-
toring of the eHome System Runtime with the eHomeCon-
figurator

The eHomeConfigurator tool is used to install the services given in the configuration.
For this, the tool must be started on the OSGi service gateway. In this case, the
eHomeConfigurator will be an integral part of the deployed eHome system. The
Deployer module is started through the button available on the tool bar of the

5Figure 4.8 shows an un-comprehensive deployment graph. This illustrates the fact that deploy-
ment graphs are very complex in the case of more sophisticated eHome systems.



58 CHAPTER 4. THE TOOL SUPPORT FOR THE SCD-PROCESS

Specificator GUI. The deployment information is displayed on the console of the
service gateway. After the successful deployment the corresponding dialogue window
displays the appropriate result. The deployment editor in the eHomeConfigurator is
refreshed to display additional runtime information of the eHome system reflected
on the eHome model’s service instance context (see Section 3.5.5).

During the deployment and the execute(ServiceObject so) method calls on
the top level services, the service instance context is completed with state informa-
tion (see Section 4.6). This is presented in Figure 3.19, which is the graphics export
from the deployment editor of the Specificator module. The editor is depicted in Fig-
ure 4.8 showing the fraction of the more complex configuration graph. The selected
state object in the editor indicates that the Person Detector service has a State
with name Person and value blue, i.e has detected the person with code blue.

Figure 4.8: The deployment editor in the Specificator module.

The deployment editor visualises the contents of the service instance context of
the eHome model instance. It enables during the runtime of the eHome system to
browse and access the model instance’s deployment and runtime relevant informa-
tion. It offers also the manipulation of the model instance. For example, the user
can change the value of the Person state to red,to alter directly the behaviour of
the person detection service. This again has the result on the behaviour of the Mu-
sic Follows Person service. Also the other services and devices can be controlled in
similar way. This shows that the eHomeConfigurator tool acts like the preliminary
user interface for the eHome system. DOBS can also be started from the Specifica-
tor module which gives even more accessing and browsing options. The deployment
editor and DOBS offer together useful testing and debugging features for the eHome
system developer.
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4.8 Summary

In this chapter the tool support for the SCD-process was discussed. The tool sup-
porting the process is called eHomeConfigurator. It consists of different modules and
GUI to support the entire process. We also described the modules of the eHomeCon-
figurator: DataHolder, Specificator, Auto-Configurator and Deployer. The imple-
mentation of the DataHolder, Specificator, and Deployer where considered in more
detail, since this thesis contributes largely to the development of these modules. In
the end of this chapter, it was described how the eHomeConfigurator supports the
SCD-process in practice by describing the usage of the eHomeConfigurator to deploy
the Music Follows Person service introduced in Section 3.6.1.

The main problem during the development and maintenance of the Specificator
module is related to the translator development (see Section 4.4). Translators have
the task to transform eHome model instance structures into the structures of the
JGraph, Java Swing, and Jena Semantic Web API’s. It is possible that new trans-
lators have to be developed for other technological APIs’ in the future, what is a
time-consuming task. Additionally Every eHome model change requires the manual
reprogramming of the translators, what is laborious and error-prone. This problem
is solved by developing and using the TRIMoS framework, a triple graph grammar
based reactive synchronisation mechanism between different models. This topic will
be handled in next chapters by discussion on the proper theoretical background and
the TRIMoS framework.
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Chapter 5

Theoretical Background

In the previous chapters we introduced the eHome model (see Section 3.3) and its
participation in SCD-process (see Section 3.6). We also handled the tool support for
the SCD-process (see Chapter 4) and saw the development problem rising related
to the translators used in the eHomeConfigurator tool (see Section 4.4). We will
describe how to solve this problem with the help of the TRIMoS framework handled
in Chapter 7. TRIMoS is a triple graph grammar based synchronisation framework
for graph-like models. Before discussing the solution to the translator problem in
Chapter 6, we have to introduce the underlying graph theory.

5.1 Graph Grammars

Nearly all current software development techniques involve graphs. The different
software models on architecture level or during runtime as well diagrams or models
specified with visual notations1 can all be considered as graphs. Computations on
these kind of graph-like models can be described with graph transformations. Our
eHome model is an object-oriented model described with UML class diagrams and
activity diagrams. Therefore, the theoretical approaches dealing with graphs and
graph transformations are suitable to handle the eHome model related technical
aspects and problems.

This section gives an overview on graph transformations and related concepts and
approaches. The most important source for the whole section is the fundamental
handbook on graph transformation theory [Roz97]. A short comprehensive overview
on graph grammars can also be found in [Hec05].

Graph grammars as an approach for rewriting have been invented in the early
seventies to compensate the deficiencies in term rewriting and (string) Chomsky
grammars [Pra71, EPS73]. The idea is to rewrite graphs which are non-linear struc-
tures. The graph grammars are the means for precise modelling of local transfor-
mations on graphs. Before introducing the graph grammars we will give a definition
for a graph.

1For example, UML family languages.
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Definition 5.1 Graph

A quadruple G := (V,E, s, t) is a graph, where V is the set of vertices,
E is a set of edges, and s, t : E → V are two functions which assign
source and target vertices to edges.

This definition for a graph is equivalent but somewhat different from traditional
notation where the graph is given just as duple with sets of nodes and edges, whereby
edges are duples of nodes. This notation is chosen to have simpler formulations for
the following definitions in this chapter. Definition 5.1 omits the labelling functions
for the vertices and edges, since they do not have a significance in the context of
this chapter. More precise definitions can be found in [Roz97].

A graph grammar consists of the finite set of graph productions (also known as
transformation rules) and a starting graph, thus defining a language whose words
are graphs. Productions rewrite a graph and are in the form p : L → R. Graphs L
and R are called the left- and the right-hand side of production. Figure 5.1 shows
a production defining a partial correspondence between the elements on its left-
and right-hand side. The production determines which nodes and edges have to be
preserved, deleted, or created during the application of the production on the given
graph, as described in the following Definition 5.2.

Definition 5.2 Graph Production

Any duple of graphs p := (L,R) with p defining a partial correspondence
between the L (left-hand side graph) and R (right-hand side graph) is a
production. If p is applied to a given (host) graph G, it produces another
graph G′. This is denoted by: G − p → G′, with respect to (left- and
right-hand side) matching morphism g : L → G and g′ : R → G′, where
g′|L = g, i.e. g and g′ are identical mappings with respect to the left-hand
side graph L. The application with respect to the morphism g is denoted
by G− p(g)→ G′.

l : Location
l.locationElements

l : Location

:=

le : LocationElement

Figure 5.1: A graph production. The left-hand side of the production is on the
left of the “:=” sign. The right-hand side of the production introduces new elements
into the graph
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Figure 5.1 shows a graph transformation, where a new edge l.locationElements
and a node le : LocationElement are added to the graph. This transformation is
performed on the graph, if there is a node matching with l : Location node inn
the left-hand side of the graph production. In this case the l.locationElements is
connected to the node which was matched with the l : Location. The created node
le : LocationElement is connected to the other end of the l.LocationElements edge.

The application of the production on the graph G with correspondence to the
match found for the left-hand side of the production follows quite a simple mecha-
nism. Every object in G which matches an element in L that has no corresponding
element in R will be deleted. Symmetrically each element from R which has no
corresponding element in L will be added to G. All remaining elements in G are
preserved. Thus, the derived graph G′ is constructed as G′ = G \ (L \R) ∪ (R \ L).
The operations for the graph are handled in Definition 5.4.

There are two different approaches to graph grammars: the gluing and the con-
necting approach, which are also respectively known as algebraic and algorithmic
approach. The theory behind the first one relies on category theory and special
pushout constructions. The second one relies on set theory. The differences in these
approaches narrow down to three aspects: the definition of the graph, how the left-
hand side of the production is matched with the graph, and how the left-hand side
is replaced with the right-hand side of the production in the graph. The matching
and replacement mechanisms are sometimes also denoted as embedding mechanism.

The connecting approach deals mostly with context-free graph grammars, where
the left side of the production consists only of one node. Thus, nodes are replaced by
graphs. There is more interest in the algebraic approach – it is used by most of the
graph transformation systems, because of involvement of context sensitive grammars
and the grater expression power. This approach is divided into the double-pushout
(DPO) and the single-pushout (SPO) approach. These approaches rely on different
pushouts, i.e. gluing conditions. Gluing conditions determine how the embedding
mechanism behaves in the case the graph elements are deleted.

The first problematic aspect is that matches can contain conflicts by matching
host graph elements and left-hand side of the production in the way that the pro-
duction specifies both deletion and preservation of the element. The second problem
is related to the dangling edges which might appear if the vertices are removed from
the graph. The DPO approach does not allow conflicting matches and production
applications producing dangling edges. The SPO approach allows both: conflicting
matches and creation of dangling edges by preferring deletion over preservation in
the conflicting match case and by deleting dangling edges.

It is also important to consider a concept of type graphs, because the system im-
plementation level deals mostly with typed constructs. The most common example
in the object-oriented software development is the relation between the classes and
the objects, i.e. the relation between the class and the instance of the class. The
class in is the type definition for the object. Thus, the graph containing classes and
relationships between them is the type graph2 for the corresponding object graph,
which is constructed during the runtime of the implemented system. A similar rela-

2Type graph can also be considered as a graph schema for its instance graphs.
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tion is between the class diagram and object diagram in the UML, which visualize
respectively the class and object structures.

Object graphs contain additionally pre-defined attributes. Thus, the attributes
must also have a type declaration. The notation o : C represents the vertex (object)
o of type (a class) C and a : T represents the type level declaration for attribute
with name a and type T . Thus, the type graph represents the type level and is
instantiated as individual snapshots, the instance graphs. For example, the eHome
model is a type graph for the eHome model instance.

When fixing a type graph TG, a graph production p : L→ R has to be considered
as production with name p having a pair of instance graphs over TG as its left- and
right-hand side. The graphs L and R are compatible, i.e. the vertices with the same
identity in L and R have the same type and attributes, and edges have the same
type, source, and target. The graph transformation depicted in Figure 5.1 has two
instance graphs corresponding to the left- and right-hand side. Their type graph is
in fact the environment context of the eHome model, described in Figure 3.4.

There are two known problems related to application of the transformation rules.
The first one is the non-determinism of the rule application. The left-hand side
i.e. preconditions of the transformation rule can be matched with different sets of
elements on the host graph3. The application of the transformation can yield in
different results when applied on different part of the host graph, i.e. let m1 and m2

be different matching morphisms, then G− p(m1)→ G′, and G− p(m2)→ G′′, and
G′ 6= G′′.

The second problem is the replacement of substructures in an unknown context.
It reflects the need for universally quantified operations. For example, to address the
maximal set of all vertices of some type reachable over specified connections from
fixed vertices in the rule – all locations the location element is connected to. In
software engineering the problem is solved by implementing a so called multi objects
concept known from UML object diagrams. This concept is implemented in the
PROGRES [Sch91] framework but also in the Fujaba [KNNZ99] tool used in the
eHomeConfigurator project (see Chapter 4) to design the eHome model.

5.2 Triple Graph Grammars (TGG)

Most of the text in this chapter relies on [Sch94, Pra71]. Schürr describes in the
fundamental paper [Sch94] the concept of triple graph grammars. TGGs are invented
to support the specification of interdependencies between graph-like data structures,
to support development on generic implementation frameworks as well as to be the
basis for development of incremental or batch-oriented data integration tools.

The motivation behind the research of triple graph grammars lies in the follow-
ing draw-back of graph rewriting systems: graph rewriting systems are usually re-
stricted to the specification of processes which perform in-place graph modifications
and transform one instance of a class of graphs into another instance of the same
class. This drawback hinders development of tools which check the consistency of
simultaneously existing related data structures. Also, integration tools which take a
complex source graph as an input and translate it into the new related target graph.

3The graph under transformation.



5.2. TRIPLE GRAPH GRAMMARS (TGG) 65

The example for related graph structures could be the requirements and design doc-
uments of the software system. Another example would be graphical specification
of a function and the syntax tree of the corresponding function in the source code.

The triple graph grammars have evolved out of pair graph grammars [Pra71].
Pair graph grammars are used for tree-to-tree translations and are too limited be-
cause of restrictions to context-free productions and one-to-one correspondences be-
tween objects in related data structures. Triple graph grammars include context-
sensitive productions with complex left- and right-hand sides.

The concept of triple graph grammars incorporates fine-grained m-to-n inter-
graph relationships with the following characteristics:

1. Elements of one graph are related to distinct elements of another graph.

2. Correspondences between vertices and edges of the source and the target graph
are at least 1-to-n. This means that arbitrary number m of nodes in source
graph can correspond to an arbitrary number n of nodes in target graph.

3. Related graphs contain references as well as private elements. For example,
some edges or vertices of one graph might have no references to the elements
of the other graph.

In general, inter-graph relationships themselves carry information about on-going
translation or analysis process. For example, there can be dependencies between
inter-graph relations according to the order of the relations (one part of the graph
was translated earlier as the other part) or validity constraints on relations (the rela-
tionship A is only valid if the relationship B exists). To express these kind of complex
inter-graph relationships, they will be modelled as a separate correspondence graph
with references to related source and target graphs by a morphisms between source
and target graphs. Triple graph data integrators will be specified by the means of
graph productions, which rewrite three graphs (the source, the correspondence and
the target graph) in parallel, in sequel.

To define triple graph grammars formally, we have to start by giving the ele-
mentary definitions for graph, graph morphisms etc. The graph corresponds to the
graph given in Definition 5.1 with one restriction. The graph has finite sets of nodes
and vertices. The finiteness of the graph is required to guarantee termination of the
possible translations.

Definition 5.3 Graph Morphism

Let G := (V,E, s, t) and G′ := (V ′, E′, s′, t′) be two graphs. A pair of
functions h := (hV , hE) with hV : V → V ′ and hE : E → E′ is a graph
morphism from G to G′, i.e. h : G → G′, iff ∀e ∈ E : hV (s(e)) =
s(hE(e)) ∧ hV (t(e)) = t(hE(e)).

Definition 5.4 Graph Operators

The operators “ ⊂” for “proper sub-graph”, “ ⊆” for “sub-graph”, “ ∪” for
“union of graphs with gluing of identified nodes and edges (nodes and
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edges with same identifiers)”, “ ∩”, and “ \” etc. are defined as usual for
graphs, and with h : G → G′ being a morphism the h(G) ⊆ G′ denotes
the sub-graph in G′, which is the image of h.

Definition 5.5 Monotonic Production

Any duple of graphs p := (L,R) with L ⊆ R is a monotonic production
and p applied to a given graph G produces another graph G′ ⊇ G, denoted
by: G ∼ p ; G′, with respect to redex selecting morphisms g : L → G
and g′ : R→ G′, iff:

1. g′|L = g, i.e. g and g′ are identical mappings with respect to the
left-hand side graph L.

2. g′ maps new vertices and edges of R \ L onto unique new vertices
and edges of G′ \G.

The monotonic productions define productions which only create graph struc-
tures and do not delete them. This is not a restriction to the translator development
or TRIMoS framework as seen in Section 6.2.1. The TRIMoS approach applies also
monotonic productions. After defining the fundamental terminology it is possible to
define also the triple productions and their application on the graph triples.

Definition 5.6 Graph Triple

Let LG, RG, and CG be three graphs, and

lr : CG→ LG, rr : CG→ RG

are those morphisms which represent m-to-n relationships between the
left-hand side graph LG and the right-hand side graph RG via the corre-
spondence graph CG in the following way:

x ∈ LG is related to y ∈ RG ⇐⇒ ∃z ∈ CG : x = lr(z) ∧ rr(z) = y.

The resulting graph triple is denoted as follows:

GT := (LG← lr − CG− rr → RG).

Definition 5.7 Triple Production

Let lp := (LL, LR), rp := (RL,RR), and cp := (CL,CR) be monotonic
productions. Furthermore, lh : CR → LR and rh : CR → RR are
graph morphisms such that their restrictions lh|CL : CL → LL and
rh|CL : CL → RL are morphisms too, which relate the left- and right-
hand sides of productions lp and rp via cp to each other. The resulting
triple production is denoted as follows:

p := (lp← lh− cp− rh→ rp).
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The application of such a triple production p to a graph triple

GT := (LG← lr − CG− rr → RG)

produces another graph triple

GT ′ := (LG′ ← lr′ − CG′ − rr′ → RG′)

i.e.
GT ∼ p ; GT ′

which is up to isomorphism uniquely defined. In sequel, there are appli-
cations of triple productions, where the redex or the result for their left-
or right-hand side production application is already known in the form of
morphism g. These restrictions are denoted for rewriting GT into GT ′

by
GT ∼ p(g) ; GT ′.

It is obvious that one triple production involves and replaces three rather similar
conventional productions in the graphs under transformation. The triple produc-
tions in TRIMoS framework are called TRIMoS rules (see Section 6.2). Figure 5.2
shows a triple production where correspondence graph production has nodes drawn
with dashed line. The left- and right-hand side graph productions are depicted re-
spectively on the left and right of the correspondence graph production. The three
productions are drawn in a way that the left-hand side graph is above the right-hand
side graph. The triple production in the figure defines a relation between the eHome
model and the JGraph structures. If the location element is added for the location,
the corresponding JGraph structure is completed with structures for an edge and a
graph cell. The definitions introduced so far enable to define triple graph grammars.

Definition 5.8 Triple Graph Grammar (TGG)

Triple graph grammar (TGG) is a pair

T GG := 〈(p : (lp← lh− cp− rh→ rp))p∈P , GT0〉

where the first component is a family of triple productions indexed by
production names in P and

GT0 = (LG0 ← lr0 − CG0 − rr0 → RG0)

is the start graph triple.

The TGG specifies a language of graph triples and is composed of triple produc-
tions, where each production component is responsible for generating or extending
the corresponding graph in the graph triple. The set of terminal labels is omitted to
identify the graphs belonging to the generated language since the graph languages
are not the focus of this thesis. The TGG can be considered as a translator, for
example translating the eHome model instance’s environment context into JGraph
structures4.

4Section 6.1 presents a TGG as a translator specified by TRIMoS rule set.
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l : Location

:=

l.locationElements

l : Location

le : LocationElement

d1.ports

e.source

e.target

d2.ports

d1 : DefaultGraphCell

p1 : DefaultPort

e : DefaultEdge

p2 : DefaultPort

d2 : DefaultGraphCell

d1 : DefaultGraphCell

:=:=

(l, d1)

(l, d1)

(le, p1)

(le, e)

(le, p2)

(le, d2)

Figure 5.2: A triple production. Left- and right-hand side graph productions are
separated and related with the correspondence graph production in the middle.

Specification of triple graph grammar productions can be used to develop dif-
ferent tools: LR-translators, which take according to the triple graph productions
left-hand side graph structure as an input and return a corresponding right-hand side
graph structure; RL-translators, which do the vice versa; correspondence analysers,
which monitor the relationships between a given graph structures; and synchronisa-
tion tools which keep left-hand side and right-hand side graphs in sync.

Developing a LR-translator tool is a rather difficult task. In general it requires a
graph parser for context sensitive productions, which is able to recover a sequence of
production applications yielding a given source graph. Development of correspond-
ing RL-translator is a nearly identical task, because of the symmetrical nature of
relations. Therefore we can speak about bidirectional transformation, analysis and
synchronisation process.

In Schürr’s paper [Sch94], there are only monotonic productions covered – any
production’s left side is part of the production’s right side. This should simplify the
development of LR- or RL-translators considerably. It is also claimed that triple
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graph grammars are not intended to model editing processes on related graphs, but
are a generative description of graph languages and their relationships. The paper
provides also a proof for two essential results. The first result states that every
triple production can be separated into a left-local triple production which rewrites
the left-hand side graph only, and a left-to-right translating triple production which
keeps the left-hand side graph unmodified and adjusts the correspondence and the
right-hand side graph. The second result states that the application of a sequence of
triple productions is equivalent to the application of the corresponding sequence of
left-local productions followed by the sequence of left-to-right transformations. We
present these two results here.

Proposition 5.1 LR-Splitting of Production Triples

A given production triple

p := ((LL, LR)← lh− (CL,CR)− rh→ (RL,RR))

may be split into the following pair of equivalent production triples:

1. pL := ((LL, LR)← ε−(∅, ∅)−ε→ (∅, ∅)) is the left-local production
for p, where ∅ is the empty graph and ε is an inclusion of the empty
graph into any graph.

2. pLR := ((LR,LR)← lh− (CL,CR)− rh→ (RL,RR)) is the left-
to-right translating production for p.

For these production triples and any graph triples

GT := (LG← lr − CG− rr → RG),

GT ′ := (LG′ ← lr′ − CG′ − rr′ → RG′),

and a morphism lg′ : LR→ LG′ the following proposition holds:

GT ∼ p(lg′) ; GT ′ ⇐⇒

⇐⇒ ∃HT : GT ∼ pL(lg′) ; HT ∧HT ∼ pLR(lg′) ; GT ′.

Proposition 5.2 Permutation of Left-Local and Left-to-Right Productions

Given n production triples p1 . . . pn and morphisms lg1 . . . lgn which de-
termine the application results of the left-hand side production compo-
nents p1 . . . pn. We can prove that:

p1(lg1) ◦ · · · ◦ pn(lgn) =

= (p1
L(lg1) ◦ · · · ◦ pn

L(lgn)) ◦ (p1
LR(lg1) ◦ · · · ◦ pn

LR(lgn)).

These results are particularly important because they prove that we can construct
a LR-translator which determines a sequence of applicable left-local productions,
which are basically simple graph productions to produce given source graph. After
that, the translator also generates a target graph using the corresponding sequence
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of left-to-right transformations. The resulting right side graph obtained in this kind
of process is equivalent to the right side graph obtained during the application of
triple productions in incremental synchronisation process between the source and
target graph.

In general, the TGG triple productions, i.e. TGG transformation rules and
relations between the left- and right hand side has to be defined explicitly by the
person specifying the rules. In other words, the morphism relating the right- and
left-hand side productions of the triple production (see Definition 5.7) have to be
defined explicitly by the developer. In the next chapter we will introduce another
TGG approach introduced in the scope of this thesis. The TRIMoS approach has
simpler TGG transformation rules without explicit correspondence graph and no
need for the specification of the relating morphisms. The TRIMoS framework is
developed to solve the problems indicated in Section 4.4. Its theoretic concepts are
given in the Chapter 6 and the implementation of the TRIMoS framework will be
discussed in Chapter 7.



Chapter 6

TRIMoS TGG Approach

We introduced the translator development problem in Sections 2.2 and 4.4. The
problem states that the development and maintenance of translators to transform the
eHome model into the structures of other technologies is laborious and error-prone.
This statement is supported by the personal experience of the author of this thesis,
who has been developing and maintaining the translators for eHomeConfigurator
project during the past two years. In this chapter, we will handle an approach,
which introduces an advanced solution for the translator development.

The approach is called Transformation Rules for Incremental Model Synchroniza-
tion (TRIMoS). This is a triple graph grammar based translator and synchronisation
framework. This approach introduces a new type of triple graph transformation rules
and covers also the implementation of the supporting framework. The TRIMoS de-
velopment was started at the University of Kassel. In the beginning it was a small
interpretor for simple triple graph grammar rules. TRIMoS was able to produce
and synchronize simple tree-like structures related to each other. It did not provide
the deletion of elements from the produced structures. It was also not able to syn-
chronise the related structures in respect of deletion and could not handle graphs in
general.

This thesis takes the TRIMoS prototype as a basis for further research and de-
velopment. The TRIMoS rules are improved by the new rule element type called
optional create (see Section 6.2). Also the bugs the implementation’s code are fixed.
It is completed to support the new rule type and to support complex graph struc-
tures. For example, TRIMoS will be able to support the synchronisation of the
eHome model instance’s environment context with JGraph structures. Thereby, the
environment context can hold arbitrary graphs consisting of locations, sub-locations
and environment elements. The implementation is also completed with the mecha-
nism responsible for the deletion of elements in synchronized models and an adapter
API for the JGraph API (see Chapter 7).

In contrast to many other batch-oriented or incremental approaches the TRI-
MoS approach is a reactive TGG approach. The specified translators are not only
used to produce the corresponding graphs for the input graph like in batch-oriented
approaches, but are also used to keep the related graphs in sync during runtime.
Every change in a graph on one side of the relation is answered immediately with

71



72 CHAPTER 6. TRIMOS TGG APPROACH

corresponding changes on the other side. This approach is thus particularly useful
for application development of GUIs.

The entire research and development of the TRIMoS system has been motivated
and performed according to the requirements from application development, includ-
ing the requirements originating from the eHomeConfigurator project. We will give
the details of the motivation in the next section. In the following sections we will in-
troduce the TRIMoS transformation rules, the semantics and the runtime execution
of the rules.

6.1 Motivation

The main motivation for TRIMoS development is to be able to specify and not hand-
code the translators (see the development problem in Section 4.4) transforming one
model to another or keeping the two models in sync. A TRIMoS translator is
specified with a set of TRIMoS-specific triple graph grammar rules also known as
TRIMoS rules. The TRIMoS interprets the rule set during the runtime of the system
monitoring the models, the correspondence of which is defined by the rules. In the
case of any changes in the synchronized models, TRIMoS propagates the changes
according to the rules to the other side. Chapter 7 describes how this propagation
is done.

TRIMoS rules are a restricted form of the TGG rules. The TRIMoS rules omit
the correspondence graph from the TGG rules. The correspondence graph is mod-
elled implicitly instead. This form of a TGG rule is motivated by the need for
simpler rules than the traditional TGG transformation rules. The simpler form is
also justified by the fact that different APIs used in application development produce
similar structures. The TRIMoS rules are discussed in Section 6.2.

The eHomeConfigurator was developed using Java technologies. An alterna-
tive for TRIMoS development to solve the translator problem, was to use PRO-
GRES [Sch91] in combination with the Upgrade framework [Jäg00]. Unfortunately,
this combination was not compatible with chosen Java technologies. The combi-
nation of PROGRES and Upgrade was also not sufficient for the visualisation and
layout needs on eHomeConfigurator’s GUI. The Upgrade framework is not able to
set an aggregation of the nodes of one graph to correspondence with the nodes of the
other graph1. Additionally, if using Upgrade, the developer has to either configure
given filters or to program the special un-parsers if the filters do not manage to
visualize the graphs2 specified in PROGRES [Sch91].

6.2 TRIMoS TGG Transformation Rules

The TRIMoS framework uses TGG transformation rules to specify the translation
and synchronisation mechanism, keeping the left- and the right-hand side graphs (see
Definition 5.6) in sync. We will consider the terms graph and model equivalent for
our approach. The graphs we are dealing with are object models constructed during
the runtime. Moreover, the type graphs are modelled with UML class diagrams and

1This can be solved by implementing a special aggregation node into the model.
2For example, in the case of special traversals.
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instance graphs correspondingly with UML object diagrams. The object diagram
notation is used for TRIMoS transformation rules (shortly, TRIMoS rules). There
are additionally more principal differences between TRIMoS rules and classical triple
productions with the following distinctions:

1. The graph productions in the TRIMoS rules are not modelled like the classical
graph productions (see Figure 5.1), but the left- and the right-hand side of
the production are presented as one graph with stereotypes for the nodes and
edges (see Section 6.2.3).

2. The correspondence graph production is not modelled explicitly in the TRIMoS
rules, but handled implicitly during runtime of the TRIMoS framework.

In the following sections the two differences are described in more detail.

6.2.1 Compound Productions

The pre- and postconditions (the left-hand and the right-hand side) of the related
graph productions in the TRIMoS rules are compound into one graph. This means
that the left- and the right-hand side graphs are joined into one graph to present a
transformation. The pre- and postconditions are not modelled as separate graphs
like in Figure 5.1. Figure 6.1 shows a compound graph production where the left-
and the right-hand side graphs are joined into one graph. This graph carries the
information needed to perform the graph transformations. Compound productions
have a more compact and intuitive form in terms of UML object diagrams, when
compared with classical graph productions. The differentiation between the pre-
and postconditions in the compound production is done using the stereotypes known
from the UML object diagrams.

l.locationElements
<<create>>

l : Location

le : LocationElement

<<create>>

Figure 6.1: A compound graph production, the left- and the right-hand side graphs
are joined into one graph.

The objects with no marking are considered to be pre-conditions (the left-hand
side) of the production. The post-conditions (the right-hand side) of the production
are marked with the stereotype create. The node l : Location on the figure is
the only object in precondition graph. The edge l.locationElements and node le :
LocationElement are the postconditions of the production.
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This notion is also known from the Fujaba story diagrams. The story patterns
being also graph productions contain additionally to the create stereotype the de-
stroy stereotype. The destroy stereotype expresses the deletion of graph elements.
The compound productions used in TRIMoS rules are monotonic productions (see
Definition 5.5). Due to this fact, the TRIMoS rules do not deal with deletions like
productions used in classical triple graph grammar rules (see Definition 5.7). Never-
theless the deletion of model elements is handled in our approach (see Section 7.5).

6.2.2 Implicit Correspondence Between the Side Models

The rule sets modelled in TRIMoS resemble pair grammars, since the correspon-
dence graph production is not modelled explicitly. As mentioned in Chapter 5 the
correspondence relation between the left- and the right-hand side graph production
in TGG transformation rules has to be defined explicitly by the developer. In other
words, the morphism relating the left- and the right-hand side graphs of the triple
production has to be defined by hand. The TRIMoS approach has simpler TGG
transformation rules without a correspondence production. There is no need for the
specification of the correspondence graph transformation and relating morphisms.
This is achieved by restricting the correspondence between the left- and the right-
hand side transformation rules to one special case. We relate the elements of one
production to the other in correspondence to the stereotypes. The preconditions of
the left-hand side composite production are related to preconditions of the right-
hand side composite production. The postconditions of the two productions are
related respectively.

The example in Figure 6.2 shows a TRIMoS rule, which is basically the same
rule as in Figure 5.2 but with two differences. First, the left- and the right-hand side
productions are composite productions. Second, the correspondence graph produc-
tion is not specified explicitly. Nodes (objects) with the same stereotype are related
with all nodes of the same stereotype on the other side. This means that object l is
related to d1 and objects le is related to p1, e, p2, and d2.

Figure 6.2 shows also attributes at the objects. For example, the object le :
LocationElement has an attribute name : String with correspondence to the type
graph in Figure 3.4. This TRIMoS rule also states that the attribute userObject :
Object of the object d2 : DefaultGraphCell must have the same value newName
as the name attribute of the object le : LocationElement. This relation is indicated
with the variable newName in this TRIMoS rule. This means that TRIMoS rules
relate not only nodes but also attributes supporting the change propagation between
attribute values.

In fact, when considering the TRIMoS rules, we see that because of the UML
object diagram notion, the edges in the diagrams are also represented by attributes
in real object model structures. In other words the relations between the objects
are realized using attribute values during runtime.

For example, figures 6.1 and 6.2 both illustrate the situation where the l :
Location object has an attribute locationElements assigned with value le : Location-
Element. The locationElements edge in the rule corresponds to the contains re-
lation between the Location and the LocationElement class in type graph seen
in Figure 3.4. The type graph states that Location object can have 0 to n Lo-
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le : LocationElement

<<create>>

name = newName

userObject = newName

l.locationElements
<<create>>

d1.ports
<<create>>

e.source
<<create>>

e.target
<<create>>

d2 : DefaultGraphCell

<<create>> d2.ports
<<create>>

d1 : DefaultGraphCelll : Location

p1 : DefaultPort

<<create>>

e : DefaultEdge

<<create>>

p2 : DefaultPort

<<create>>

eHome model JGraph model

Figure 6.2: A TRIMoS rule to create a location element and corresponding JGraph
structures.

cationElement objects as attributes via the contains relation. The equivalence
between edge and attribute concepts enables for the TRIMoS implementation to set
the correspondence relation only between the objects of the synchronized models.
This also applies for the rule objects in compound productions in TRIMoS rules.

6.2.3 Rule Element Stereotypes

We already introduced the stereotype for postconditions and discussed the precon-
ditions of the compound transformations. The preconditions are not denoted by any
stereotype and the postconditions are denoted by the create stereotype (in figures
create). There is also another stereotype in addition to the create.

The second stereotype is called optional create and it is denoted on the di-
agrams as optional. Figure 6.3 depicts the composite production known from
Figure 6.1 and changes it by setting the stereotype optional for the object le :
LocationElement. Thus, we have three types of rule elements: preconditions, post-
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conditions (create), and optional create elements (optional). The element types
apply to the objects (nodes) and as well to the attributes (edges, and attributes).

l.locationElements
<<create>>

l : Location

le : LocationElement

<<optional>>

Figure 6.3: A composite production to create a location element with optional
create stereotype.

The optional create stereotype has quite the same purpose and semantic as the
multi objects (see Section 5.1) in the traditional graph grammar approach. This
stereotype deals with the need for universally quantified operations. For example,
the operation acquiring all Location objects a LocationElement object is connected
to. This means in our case dealing with relations between classes with constraints
0..n or 1..n on both ends of the relation. The idea of the optional create (see
also Section 7.4) is to model an element, which must be considered to be a part
of preconditions, if it already exists in the model (is matched during precondition
search) or which must be created, if it does not exist in the graph (not found for the
match).

For example, the environment context of the eHome model as a type graph (see
Figure 3.4) specifies the relation contains between the Location and LocationEle-
ment class. The relation is specified with cardinalities 1..n for locations and 0..n
for location elements. Location objects can have an arbitrary number of Loca-
tionElement objects related to them and LocationElements are always connected
to at least one Location object.

The transformation without optional create stereotype for LocationElement ob-
ject in Figure 6.1 respects the constraint 0..n for LocationElement objects. Ac-
cording to this transformation, it is possible to create arbitrary number of Loca-
tionElement objects in relation with one Location object. This transformation
does not act correctly in the TRIMoS rule, if a LocationElement object is related
to more than one Location object. In other words, if an existing LocationElement
object with connections to Location objects will be connected with some other
Location object, only the link between the objects has to be created.

The TRIMoS rule without optional create stereotype for LocationElement ob-
ject in Figure 6.2 performs in synchronisation process as following. Every time an
object from the Location class is set to relation with LocationElement object, the
corresponding structures to postconditions are generated into the related JGraph
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model. The new JGraph edge and cell structures3 corresponding to the post condi-
tions are generated even, if an already existing LocationElement object is related
to a Location object. This makes the related structures inconsistent.

The transformation including the optional create stereotype in Figure 6.3 solves
this problem. It has the following semantic. If the object corresponding to the
optional create rule element does not exist in the model (it is not found during
the match search for preconditions), the rule element is handled as a part of the
postconditions (the object corresponding to the element is created into the model). If
the object exists in the graph (it is found during the match search for preconditions),
the rule element is handled as a part of the preconditions (the object is not created
to the model). The optional create stereotype is handled in detail in Section 7.4.

Thus, if the TRIMoS rule in Figure 6.2 is changed in a way that the objects
le : LocationElement and d2 : DefaultGraphCell are specified with an optional
create stereotype (as in Figure A.5), the situation described in the last paragraph will
have different results. In the case an existing LocationElement object is related with
an existing Location object only the objects corresponding to the postconditions
(corresponding to rule elements p1, e, and p2) are created into the JGraph model.

6.2.4 Initialisation Rule

There is one special rule in TRIMoS. According to the underlying theory, TGGs
consist of the set of triple productions and an initial graph (see Definition 5.8). This
also applies for the TRIMoS approach. The TRIMoS rule set defining the translator
can be viewed as a TGG, but the initial graph is defined with the help of one special
rule in the grammar. We call this rule initialisation rule and it consists only of
postcondition objects, i.e. objects with the create stereotype. During the start-up
of the framework, the rule set is read and the initialisation rule is executed to create
the initial graph. For example, the initialisation rule for the environment editor of
the eHomeConfigurator tool only consist of an Environment class object and the
DefaultGraphCell object. Both objects have the stereotype create as shown in
Figure 6.4. The rules consisting of only postconditions are normally not interpreted
by the TRIMoS framework.

e : Environment

<<create>>

name = newName userObject = newName

d : DefaultGraphCell

<<create>>

eHome model JGraph model

Figure 6.4: An initialisation rule for the environment editor of the eHomeConfig-
urator tool.

The implementation of TRIMoS can have also the objects corresponding to the
initialisation rule as the input. In this way the objects are not created but just linked

3The JGraph API is explained in Section 7.7.1
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with the correspondence graph. This is an option to link the TRIMoS framework
with an application, which uses translators specified with TRIMoS rules. In this
case TRIMoS considers particular objects from the application as the initial models
to monitor and synchronise.

6.2.5 Semantics

The semantics of the TRIMoS rules depend on the local context of the rule applica-
tion. Existing objects in the model can be matched with postconditions of different
productions. The execution of the context for the TRIMoS rule is the precondition
match. There are approaches like in [Wag01], which do not allow this kind of se-
mantics, stating that every model object can be involved with postconditions of only
one production. In other works an object in the model can be produced only by one
production. We apply this kind of semantic because of the reactive nature of the
TRIMoS framework.

Our semantics yields a smaller overhead for the rule matching task. We do not
have to check if the object has already been used as a part of any production. We
also have the flexibility to use different productions with intersecting contexts.

With the semantics introduced in [Wag01], there is no need for the optional
create stereotype. The problem introduced in Section 6.2.3 can be solved with two
productions: the production p with only pre- and postconditions (as in Figure 6.1)
and production p′ having un-connected preconditions as objects l : Location and
le : LocationElement. The link l.locationElements is the only element in postcon-
ditions. The latter production is used in the case a new link is introduced between
a given Location and LocationElements objects.

Considering the semantics of TRIMoS, these kind of rules result in a conflict.
The first rule p described in Figure 6.1 is also applicable for the change if a new link
is introduced between given Location and LocationElements objects. The context
for the production p is the only match found for preconditions. The optional create
stereotype solves this conflict. The two productions p and p′ are described with only
one production shown in Figure 6.3 involving the optional create stereotype. This
production renders the specification of the other two productions useless by combin-
ing the semantics of both productions. Thus, the rules become more comprehensive
and intuitive with an optional create stereotype.

6.2.6 Runtime Execution of the TRIMoS Rules

The TRIMoS framework can be used by application developers to create bidirectional
translators by linking it with their application. In this case TRIMoS is started
together with the application and will be working as a translator interpreting the
TRIMoS rules specified by the application developer. The framework loads the rule
set and the initial models for the left- and the right-hand sides. The developer can
specify different rule sets for distinct translators.

The TRIMoS framework is developed for reactive synchronisation and synchro-
nized models are monitored by the framework. Thus, any change in the models is
discovered and localized immediately after the change appears. For every change,
it is checked if it corresponds to some graph production in the TRIMoS rule set
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applicable for the changed model. In other words it is checked, if the change fulfils
the match for the pre- and postconditions of some production applicable for the rule
side, where the change appeared. With respect to the production, if the pre- and
postcondition match is found for graph transformation, the corresponding generat-
ing production is executed on the other related model to simulate the change on the
other side. We must emphasize the bi-directionality of the TRIMoS framework – it
does not matter if the change appears on the left- or the right-hand side model.

Besides the synchronisation of the immediate changes, TRIMoS is also able to
generate structures corresponding to application of the sequence of TRIMoS rules.
This is the case if a larger structure is added to the model in one side and the struc-
ture corresponds to derivation of more than one production application. Therefore
we can say that besides the reactive properties the TRIMoS framework has also
properties known from batch-oriented TGG translators.

We see that the translational nature of the TRIMoS framework corresponds to
the LR- or RL translators known from the classical TGG approach (see Section 5.2).
The framework considers according to Proposition 5.1 the change on the left- or
right-hand side model and then propagates the transformation using corresponding
TRIMoS rule to the other side.

The implementation of TRIMoS does not use the left-local and the left-to-right
production permutation results known from Proposition 5.2. The TRIMoS works
in a so called rule-by-rule mode considering one rule after another in either of the
two cases: translating larger structures, or synchronizing changes in the scope of one
TRIMoS rule.

6.3 Summary

In this chapter, we introduced an approach for the translation and synchronisation
framework called TRIMoS. This approach relies on triple graph grammar theory,
but introduces restrictions and differences when compared to the classical TGG
approach. The graph productions are modelled differently using just one graph and
stereotypes and not two graphs for specification of the pre- and post-conditions of the
production. Moreover, the TRIMoS transformation rules omit the correspondence
production in the triple productions by modelling it implicitly. In the next chapter
we will introduce the implementation of the TRIMoS framework and also show how
it is used to create bidirectional translators between the eHome model and visualizing
JGraph model.
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Chapter 7

TRIMoS Implementation

In this chapter we discuss the implementation of the TRIMoS framework in detail.
We will introduce the structure of the framework and principles how it performs the
translation and synchronisation tasks. We will also discuss the matching algorithm.
We will describe in detail implementations for: disjoint preconditions, the optional
create stereotype, and the deletion of the model elements. Finally we will introduce
the adapted JGraph API as an example how to adapt a programming API to be
used with the TRIMoS framework.

7.1 Framework

The TRIMoS framework is used to specify bidirectional translators for object models
with the help of TRIMoS rule sets. A rule set is interpreted during the runtime of
the framework. It means that an application developer has to link the application
with the TRIMoS framework to be able to use it. The framework should be used, if
there is a need to translate structures of the given object model to the structures of
some other object model. The programming APIs must be known for both models.
As an example, we use in our research the eHome model API and the JGraph API.

APIs can be considered as type graphs for object models. They define the types
for corresponding objects, the relations between the objects and how the object
models are created during runtime. It means that the rule set defining a bidirectional
translator for two different models such as the eHome model and the JGraph model,
has to correspond to the programming APIs of these models. More precisely, the
left- and the right-hand sides of the TRIMoS rules have to follow the corresponding
APIs.

The TRIMoS framework is still a project under development. It is a working
prototype, which has a perspective to become a powerful and easy to use develop-
ment tool for generic translators between arbitrary Java APIs. It consists of the
synchronisation core and a simple editor for the TRIMoS rules. The editor is shown
in Figure 7.1. The editor helps to define a set of TRIMoS rules for a translator. The
rules in set are seen on the panel on the left as a list. On the right panel side, there is
a graphical editor with two panels corresponding to the left- and the right-hand side
of the TRIMoS rule. The figure shows the rule for creating a location element for a
location. The stereotypes of the rule elements are noted with different colours: black
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for preconditions, green for postconditions (create stereotype), and blue for optional
create stereotype. In the figures of this thesis the stereotype notations create and
optional will be used to indicate the stereotypes.

Figure 7.1: A simple editor for TRIMoS rules.

7.1.1 The Design of the Framework

The TRIMoS rule editor helps to specify a set of rules for a translator. During
the start-up of the framework this set is loaded and interpreted during runtime
of the framework. This subsection gives an overview of the architecture of the
TRIMoS framework. The internal representation of the rules, but also the structures
supporting the translation and synchronisation process are discussed. The inner data
structures of the TRIMoS framework are designed with the Fujaba tool. Figure 7.2
shows the design of the TRIMoS framework.

The first part of the TRIMoS design are the necessary classes for the TRIMoS
rules. The main class summarizing the common properties of the rule elements (rule
objects) is TItem (see Figure 7.2). This class contains the attribute for the rule
element’s name and boolean flags signalling, if the rule object is a precondition or
has the stereotype optional create. The TRIMoS rule itself is represented with the
TRule class. The rule side is represented with the TSide class. One rule can have one
side per synchronized model. The rule side consists of the rule elements denoted by
the TObject class. Every rule object in the rule side has to have a distinctive name.
Rule elements have also an attribute indicating what is the type (the class name)
of the modelled object. There is also a TAttribute class modelling the attributes
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of the objects. This class is related to the TObject class and has also the field to
indicate the value of the modelled attribute.

As discussed in Section 6.2.2 also the edges in the object graph, i.e. relations in
the object model are modelled with attributes. If the attribute type is primitive, for
example, an integer or a string, it appears on the object node it belongs to as a string
pair attrName = value in the rule editor. The attrName is the attribute name and
the value the attribute value. If the attribute value is another object in the diagram,
it appears as an edge between the object it belongs to and object, which is the value
of the attribute. The edge is labelled o.attrName in this case, where o is the object
name the attribute belongs to and the attrName the attribute name. For example,
see Figure 7.1. The object elem : LocationElement has the attribute name with
value elementName and the object l : Location has the attribute locationElements
with value elem.

collapsed

Boolean : optional
String : name

Boolean : condition

TItem

collapsed

Point : visualLocation
String : type

TObject

Transformation

InstanceCreator

«reference»

attributeAccessor 

AttributeAccessor

«reference»
0..1

0..n
0..1

0..1

0..n

models 

0..1

model 

0..n

name

0..1
objects 

variable

variables 
0..1

0..n

0..n

item

0..1
instance 

0..1

0..n

attributes 

0..1

String : name

TModel

0..1

0..n

0..1

item 

Match

Object

«reference»

0..n

0..1

parent 

collapsed

String : value

TAttribute

model

0..1
sides 

PropertyChangeManager

«reference»

propertyChangeManager 

instanceCreator 

TSide

TRule

linkedMatches 

CompletedMatch

rules 

Figure 7.2: A design of the TRIMoS framework.

The rule set is modelled with the Transformation class. It has a relation to the
TModel class presenting the synchronised models. A TModel instance aggregates all
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rule sides, i.e. the compound transformations which concern the model represented
by the TModel object.

The TModel class also deals with the runtime structures of synchronised object
models during runtime. There are three interfaces related to it: AttributeAcces-
sor, PropertyChangeManager, and InstanceCreator. There interfaces are used by
the TRIMoS framework to monitor or transform the synchronised models. These
interfaces have to be implemented or the default implementations of these interfaces
have to be sub-classed, if TRIMoS is used with an API, which does not correspond
to the JavaBeans Specification [Sun97]1. An example is given in Section 7.7, where
the JGraph API is adapted to work with TRIMoS. If the synchronized API follows
the JavaBeans specification, the default implementations of the interfaces can be
used. These are: DefaultAttributeAccessor, DefaultPropertyChangeManager,
and DefaultInstanceCreator.

The AttributeAccessor interface is used to read and write field values of the
model objects. For example, in the case of checking the type validity or creation of
objects. The implementing classes use Java Reflection API. The PropertyChange-
Manager manages the property change listeners used to monitor the synchronised
models by assigning the listener directly to the model or delegating the model change
events to the listeners. The InstanceCreator interface is responsible for creating
and destroying the objects in the model. For example, in case of a model change on
the left-hand side model, it has to be propagated to the right-hand side model. This
change includes the creation or removal of objects.

Figure 7.2 also shows the classes Match and CompletedMatch. These classes have
a special role in the synchronisation mechanism and we will refer to the objects from
these classes in the text as match and respectively completed match. The match and
completed match are objects forming the correspondence graph between the left- and
the right-hand side models. The correspondence graph is constructed only during
the runtime of the framework. The Match objects are used to match the objects
corresponding to preconditions of the productions. The CompletedMatch objects
match the objects corresponding to postconditions of the production application.
The term “match matches some model object(s)” means that the match has a link
to these model objects. The correspondence graph creation according to the rules
is described in Section 7.1.2.

The names for the match and completed match objects are chosen with purpose.
The match corresponds to the match morphism between the graph production and
graph. The completed match corresponds to the elements matching the postcondi-
tions of the graph production, but expresses also the completion of the model with
new objects according to the graph production.

Every match has a relation to some rule side and every match can have linked
matches for the other side models. This applies to matches and completed matches
because the CompletedMatch is a sub-class of the Match class. This results in struc-
tures where the corresponding objects in the left- and the right-hand side models are
related via the chain of two matches – a match per side (see Section 7.1.2). There is
also a relation between the matches and the completed matches. The matches are

1The accessor methods and property change listener conventions.
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considered to be parent matches for completed matches, because matches match the
preconditions of the TRIMoS rule.

Figure 7.2 does not include all important classes for the framework structure.
There are classes for synchronisation management (SyncManager), match listeners
(MatchListener), and matching algorithms (Matching). These classes are not de-
signed with Fujaba.

Synchronisation manager is responsible for the synchronisation between models.
It manages the match objects in the correspondence graph having a register for
matches. Every match is registered in the synchronisation manager together with a
match listener. The Match listener has an objective to monitor the model objects
related to the match. The monitoring is done using the PropertyChangeManager
or directly the model objects. The model objects are monitored directly if the
PropertyChangeManager is able to set the match listener to listen directly to the
model objects.

If a change appears on the object under the inspection of a match listener, the
match listener triggers the matching algorithm in the Matching class to discover
if the change corresponds to some rule. The matching algorithm (see Section 7.2)
performs the searches using the match objects between synchronized models. If
the change corresponds to some rule, the other side models are completed with
the corresponding structures using again methods in the Matching class. These
completion methods use completed match objects on the changed side to create
corresponding completed match objects for the other side model. The completed
matches are also used to create the objects for the other side model. The examples
for the matching structures are given in the next section.

A Translator in the TRIMoS framework is a set of TRIMoS rules. Every TRIMoS
rule consists of two graph productions for the left- and the right-hand side model.
Thus, if a change appears on one side model, it is possible to correspond with a
change on the other side model. But in addition to the synchronisation process, the
rule sides also define the construction process for the corresponding side model. At
least on the model parts, which are synchronized.

Every object in the synchronized model parts is monitored by some match lis-
tener. This is because, the translators transforming one model to another are defined
in the way that they also cover the construction process of the synchronized parts
of the models2. The initialisation rule (see the example on Figure 6.4) creates the
initial models on both sides along with the match objects between them (see Sec-
tion 7.1.2). If every object or unitary structure added to the model will be created
in correspondence to some TRIMoS rule, the corresponding matches are created as
well. Thus, the synchronized models are monitored completely. The next section
gives an overview on the correspondence graph structures consisting of match objects
during the runtime of the framework.

2It is usual that the entire model is synchronised
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7.1.2 The Correspondence Graph During Runtime of the Frame-
work

The correspondence graph is in between the synchronized left- and right-hand side
models and is created along with the structures of these models. The example in this
section will be the constructed in correspondence to the rule set for the environment
editor in the eHomeConfigurator tool. The rule set is given in appendix A.

As noted in Section 6.2.4 the initialisation rule is executed at the start-up of the
framework. The initialisation rule for the environment editor is given in Figure 6.4.
Corresponding to the rule, there are an Environment and a DefaultGraphCell ob-
ject created. Both objects are noted as postconditions in the rule. Therefore, they
are matched with completed match objects. The resulting structures of the initial-
isation rule execution can be seen in Figure 7.3. The figure displays the structure
constructed during the eHome model changes corresponding to the sequential exe-
cution of the initialisation (Figure 6.4), location creation (Figure A.3), and location
element creation (Figure A.5) rules. The resulting structure is divided into three
parts by the dashed line in the figure: part a) corresponds to the initialisation rule,
part b) to the location creation rule, and part c) to the location element creation
rule.

The initialisation rule execution creates the objects e : Environment on the
left-hand side; d : DefaultGraphCell on the right-hand side; and m1 : Match,
m2 : Match, c1 : CompletedMatch, and c2 : CompletedMatch to the correspon-
dence graph3. The side model objects are matched with completed match objects
to indicate the correspondence to postconditions of the applied rule. The correspon-
dence relation between the objects e and d is modelled with the linked completed
matches c1 and c2. There are also match listeners registered together with the com-
pleted matches c1 and c2 to monitor the property changes on the respective objects
e and d.

After initialisation, a location l is created and connected to the environment e.
This action fires the property change event on e, which is received by the correspond-
ing match listener related to the completed match c1. The match listener triggers
the matching algorithm (see Section 7.2). The matching algorithm discovers that
the change in the left-hand side model corresponds to the location creation rule (see
Figure A.3). The change is matched by a match m3 and completed match c3. The
m3 matches the environment object e as a precondition for the rule application and
c3 matches the created location object l as a postcondition for the rule application.

Now, the corresponding matches and objects are created for the right-hand side
JGraph model. The search for preconditions in the right-hand side is performed
using the completed match objects c1 and c2. The graph cell object d is found and
matched with a new precondition match m4. Then the m4 is completed by creating
a completed match c4 as its child match. The JGraph objects p1, e1, p2, and d2
are created during completion. The created JGraph structures correspond to the
right-hand side of the location creation rule (see Figure A.3).

A location element le is created as the next object into the eHome model. It is
connected to the location l. For le similar actions take place like during the location

3In the following text we will omit the type definitions for the objects and refer to them using
just the name.
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e : Environment
name = Home userObject = Home

m1 : Match m2 : Match

c1 : CompletedMatch c2 : CompletedMatch

e.locations d.ports

e1.source

e1.target

d2.ports

m3 : Match m4 : Match

c3 : CompletedMatch c4 : CompletedMatch

l : Location
name = RoomA

d : DefaultGraphCell

userObject = RoomA
d2 : DefaultGraphCell

p1 : DefaultPort

p2 : DefaultPort

e1 : DefaultEdge

l.locationElements

d2.ports

e2.source

e2.target

d3.ports

m5 : Match
m6 : Match

le : LocationElement
name = Door

userObject = Door
d3 : DefaultGraphCell

p3 : DefaultPort

p4 : DefaultPort

e2 : DefaultEdge

c5 : CompletedMatch

c6 : CompletedMatch

a)

b)

c)

Figure 7.3: TRIMoS runtime structures for eHome model, correspondence graph,
and JGraph model

creation, but following the location element creation rule in Figure A.5. This rule
contains objects with the optional create stereotype. The matching algorithm is
more complex in this case(see Section 7.4). The algorithm checks, if the created
location element is already matched (has connections to other location objects) and
if additionally to the objects p3, e2, and p4 also d3 has to be created on the right-
hand side JGraph model. The mentioned objects are created because the le is a new
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object in this rule context. The created objects are matched with completed matches
indicating the correspondence to postconditions of the applied TRIMoS rule.

Another location l2 is added into the eHome model with a connection to the
environment e. This situation is shown in Figure 7.4. Figure 7.4 completes Figure 7.3
with structures created in this situation to the side models and correspondence
graph, but omits correspondence graph structures from part a) in Figure 7.3 and
completely part c). The added objects belong to the part b) in Figure 7.3.

e : Environment
name = Home userObject = Home

e.locations d.ports

e1.source

e1.target

d2.ports

m3 : Match m4 : Match

c3 : CompletedMatch c4 : CompletedMatch

d : DefaultGraphCell

userObject = RoomA
d2 : DefaultGraphCell

p1 : DefaultPort

p2 : DefaultPort

e1 : DefaultEdge

e.locations d.ports

e3.source

e3.target

d4.ports

c7 : CompletedMatch c8 : CompletedMatch

l2 : Location
name = RoomB

userObject = RoomB
d4 : DefaultGraphCell

p5 : DefaultPort

p6 : DefaultPort

e3 : DefaultEdge

l : Location
name = RoomA

... ...

...

...

Figure 7.4: TRIMoS runtime structures for eHome model, correspondence graph,
and JGraph model – second location is added.

The addition of a location to the environment is processed by the match listener
related to m3. The matching algorithm determines two facts: the change corre-
sponds to the location creation rule and the fact that preconditions are matched
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already with match m3. Match m3 was created during application of the same rule,
the first time and can be reused in this matching. The created location element l2
is matched with the completed match c7. The parent match of the c7 will be m3.
The preconditions for the other side are found via the m4. The necessary objects
p5, e3, p6, and d4 are created according to the rule and matched with the completed
match c8. The parent match of c8 will be m4.

The creation of the location l2 shows that the rule application in the same con-
text (environment e as preconditions) results in the correspondence graph structure
where the context is matched with one match object and objects created during
every application of the rule with a new pair of completed matches. The completed
matches are matching object sets in the model, which are created during every ap-
plication time of any rule.

The next eHome model change connects the location element le to the location l2.
This change corresponds to the create location element rule (see Figure A.5). This
time, the location element already exists and is matched in the model. Only the link
is created between the location element le and the location l2. Thus, according to the
optional create stereotype, the location element le has to be treated during matching
as a part of preconditions. Figure 7.5 illustrates the outcome of the matching and
model completion steps initiated by the change in the eHome model. This figure
omits nearly completely parts a) and b) visualising the environment and location
creation in Figure 7.3. It presents the two locations l and l2, part c), and completes
the part c) in respect to the last eHome model change.

The eHome model change connecting the le to l2 is handled by the match lis-
tener related to the completed match c7 (see Figure 7.4). The matching algorithm
discovers that the change corresponds to the location element creation rule. It also
discovers that in this case the location element le has to be considered to be part
of the preconditions. Nevertheless, the location element is matched with the com-
pleted match, like postconditions (see Section 7.4). The preconditions (including
the objects corresponding to the optional create elements) are also found in the
JGraph side model. The missing model objects p7, e4, and p8 are produced. The
produced elements and preconditions corresponding to the optional create stereo-
type rule elements are matched with new completed matches and the rest of the
preconditions with a match object. The match objects are also new, because the
context is different for the rule application.

There is a difference in the outcome of the last two changes in the eHome model.
During the creation of the second location on the JGraph side there are four objects
created p5, e3, p6, and d4 to represent the edge between the graph cell representing
the environment and a new cell representing the new location. The rule A.3 is
applied for this change. When connecting the given location element with the new
location, the JGraph side is completed with only three objects p7, e4, and p8. These
objects are used to draw an edge between the cells representing the new location
and the location element. The rule A.5 is applied for this change. The difference is
caused by the fact that location element creation rule contains the optional create
rule element.

In the next section we will give an overview of the matching algorithm used
by the TRIMoS framework. The matching routines are discussed in detail in the
following sections.
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l : Location
name = RoomA userObject = RoomA

d2 : DefaultGraphCell

l.locationElements

d2.ports

e2.source

e2.target

d3.ports

m5 : Match m6 : Match

le : LocationElement
name = Door userObject = Door

d3 : DefaultGraphCell

p3 : DefaultPort

p4 : DefaultPort

e2 : DefaultEdge

c5 : CompletedMatch c6 : CompletedMatch

l2 : Location
name = RoomB

userObject = RoomB
d4 : DefaultGraphCell

l2.locationElements d3.ports

e2.source

e2.target

d4.ports

m7 : Match m8 : Match

p7 : DefaultPort

p8 : DefaultPort

e4 : DefaultEdge

c9 : CompletedMatch c10 : CompletedMatch

... ...

......

Figure 7.5: TRIMoS runtime structures for the eHome model, correspondence
graph, and JGraph model – location element is connected to the second location.

7.2 Initial Matching Algorithm

The TRIMoS framework synchronises the models by constantly monitoring them.
The synchronisation is done symmetrically with respect to the left- and the right-
hand side model. The synchronised change events are considered to happen in
the left-hand side of the model. Thus, in the following text we discuss the LR-
translations assuming that RL-translations are performed in exact the same manner.

The synchronisation is performed with the help of match listeners, which listen
to the changes in the left-hand side model. Every match object is paired with one
match listener, which listens to property change events on the model objects matched
by the match object. For example, considering Figure 7.3 there is a match listener
paired with match m3 listening to the change events of the environment object e or
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a match listener paired with the completed match c4 listening to the change events
on objects p1, e1, p2, and d2.

If an object changes in the model, the matching algorithm is started by a match
listener which discovered the change. The matching for the rule application is
searched locally, close to the change. The matching algorithm itself resides in the
Matching class and it is used to analyse the model structure related to some match.

The initial (simple) matching algorithm developed in early stages of the TRIMoS
framework is the following:

• Phase 1. In the model where the change occurs (the left-hand side) it is
considered, if the change matches some rule:

1. the changed context is matched with all rules to see if the preconditions
of the rule match,

2. the postconditions of the rules are also checked to discover if the change
corresponds to the production, i.e. if the rule matches on the left-hand
side together with its preconditions and postconditions,

3. the the objects corresponding to the pre- and postconditions are matched
with new completed match,

4. the completed match is split into match matching precondition objects
and completed match matching postcondition objects.

• Phase 2. After the match is found on the left-hand side, the matches are found
and completed on the right-hand side – i.e. the changes on the left-hand side
model are propagated to the right-hand side model:

1. On the right-hand side the corresponding preconditions are searched for
the left-hand side precondition objects. The corresponding match is cre-
ated if not found.

2. The found match is completed with the completed match on the right-
hand side, i.e. the objects corresponding to the rule’s right-hand side
composite production’s postconditions are created in the right-hand side
model.

7.3 Disjoint Preconditions

TRIMoS also deals with the rules where the preconditions in compound production
are not a connected graph. This is the case if a simple link creation between already
existing objects has to be considered as a graph production. The link creation can
correspond to the creation of a larger structure in the other side containing objects
and links between them. For example, Figure 7.6 shows a rule where objects l1
and l2 form a precondition graph for the left-hand side and d1 and d2 respectively
for the right-hand side. The postcondition link l1.locations on the left-hand side
corresponds to a larger structure on the right-hand side indicated with the stereotype
create. This kind of a rule would be necessary, if the eHome model structure would
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require that every location object has a link to an environment object. Then, sub-
location construction is defined only by creating links between given locations in the
model.

l2 : Location

name = newName

userObject = newName

l1.locations
<<create>>

d1.ports
<<create>>

e.source
<<create>>

e.target
<<create>>

d2 : DefaultGraphCell

d2.ports
<<create>>

d1 : DefaultGraphCelll1 : Location

p1 : DefaultPort

<<create>>

e : DefaultEdge

<<create>>

p2 : DefaultPort

<<create>>

eHome model JGraph model

Figure 7.6: TRIMoS rule with disjoint preconditions.

The simple matching algorithm given in Section 7.2 is not capable to handle
TRIMoS rules using compound productions with disjoint preconditions. It is because
one precondition object must be a postcondition attribute for another precondition
object (l1 is an attribute of l2 according to the production in Figure 7.6). In other
words, the link between the two precondition objects is not a precondition link. The
initial matching algorithm can not search for a precondition match via postcondition
links in the right-hand side model. This is because of a simple reason: the links do
not yet exist. We enhance the simple matching algorithm to deal with disjoint
preconditions.

The simple matching algorithm copes with several precondition objects in the
rule side, if they are interconnected with precondition links. In a simple case, the
preconditions compose a connected graph for the matching algorithm. The matching
algorithm chooses one object from the connected precondition graph. It finds all
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objects and attributes, if these are available to satisfy the entire rule. The simple
matching algorithm does not find the match for precondition objects which are not
interconnected with precondition links.

The first phase of the matching algorithm is not modified. The searching for
the match on the left-hand side model can be done by following the postcondition
links also in the disjoint preconditions case. A completed match is created during
the execution of the first phase. It is splitted after the matching step into the match
and completed match to match precondition and postcondition objects correctly.

The search for precondition objects for the right-hand rule side is changed in the
second phase of the matching algorithm. The preconditions can be searched only in
a connected graph so far. In the current case, the preconditions are not connected.
Thus, we introduce a candidate set for precondition objects. The candidate set
consists of objects which are suitable candidates for precondition objects, i.e. the
candidate set is a container object having links to all of the candidates for the
precondition objects. In terms of graphs, the candidate set is a common parent for
possible precondition objects completing the precondition graph to be connected.

We use Figure 7.7 to illustrate the following discussion on the disjoint precondi-
tions and the candidate set. This figure extends Figure 7.4 by visualizing a change
where location l2 is connected as a sub-location to the location l. The change cor-
responds to the TRIMoS rule in Figure 7.6. Figure 7.7 shows the match objects
m9 and c11 created during the first phase of the matching algorithm. According to
the TRIMoS rule with disjoint preconditions in Figure 7.6 the preconditions l and
l2 are matched with the match m9. The completed match c11 has no relation to
model objects because the rule has nothing but a link between the location objects as
postcondition. The objects painted with dashed lines are created during the second
phase of the matching algorithm. This will be discussed below.

The candidate set for a precondition search on the right-hand side is constructed
in the following manner: the completed match on the left-hand side is used to start
searching the candidates, because this completed match represents the change on
the left-hand side model (see c11 in Figure 7.7). First, the parent match of the
completed match is acquired (match m9 in Figure 7.7). Second, the instances of
the parent match are acquired (objects l and l2 in Figure 7.7). These instances
correspond to the disjoint precondition objects for the rule application on the left-
hand side model. For every instance the completed matches are acquired (completed
matches c3 and c7 in Figure 7.7). For these completed matches the linked completed
matches for the right-hand side model are acquired (completed matches c4 and c8
in Figure 7.7). The instances of the completed matches on the right-hand side are
added to the candidate set (objects p1, e1, p2, d2, p5, e3, p6, and d4 in Figure 7.7
are added to the candidate set).

After constructing the candidate set, the right side of the given rule is changed.
A new precondition rule object is added to the right side of the rule, namely the rule
object corresponding to the candidate set. This new rule object has links to all the
precondition rule objects in the rule. The changed rule side corresponding to the
TRIMoS rule in Figure 7.6 is shown in Figure 7.8. The objects in the right-hand
side model suitable for the preconditions in the right-hand rule side are searched
with the help of the changed rule and the constructed candidate set.
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e : Environment
name = Home userObject = Home

e.locations d.ports

e1.source

e1.target

d2.ports

m3 : Match m4 : Match

c3 : CompletedMatch c4 : CompletedMatch

d : DefaultGraphCell

userObject = RoomA
d2 : DefaultGraphCell

p1 : DefaultPort

p2 : DefaultPort

e1 : DefaultEdge

e.locations

d.ports

e3.source

e3.target

d4.ports

c7 : CompletedMatch c8 : CompletedMatch

l2 : Location
name = RoomB

userObject = RoomB
d4 : DefaultGraphCell

p5 : DefaultPort

p6 : DefaultPort

e3 : DefaultEdge

l : Location
name = RoomA

... ...

...

...

m9 : Match
m10 : Match

c11 : CompletedMatch c12 : CompletedMatch

e5.sourcee5.target

p9 : DefaultPortp10 : DefaultPort

e5 : DefaultEdge

d2.ports
d4.ports

l.subLocations

Figure 7.7: Application of the TRIMoS rule with disjoint preconditions on the
eHome model instance

If the search is successful, the found match on the right-hand side is linked to
the left-hand side precondition match. The right-hand side match matches the pre-
conditions on the right-hand side model although, the preconditions are not forming
a connected graph in the right-hand side model (objects d2 and d4 are matched
with m10 in Figure 7.7). The matching algorithm proceeds as usual by completing
the found match on the right-hand side with completed match for postconditions
(completed match c12 is created in Figure 7.7) as well as a corresponding postcon-
dition structure in the right-hand side model (objects p9, e5, and p10 are created in
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userObject = newName

d1.ports
<<create>>

e.source
<<create>>

e.target
<<create>>

d2 : DefaultGraphCell

d2.ports
<<create>>

d1 : DefaultGraphCell

c : CandidateSet

p1 : DefaultPort

<<create>>

e : DefaultEdge

<<create>>

p2 : DefaultPort

<<create>>

c.candidates

c.candidates

Figure 7.8: A rule side is complemented with the rule object for the candidate set

Figure 7.7). The completed match created during the completion of the right-hand
side model is linked with the initial completed match on the left-hand side. The
changes of the matching algorithm are summarized in the Phase 2 step 1 of the
current matching algorithm in Section 7.6.

7.4 Optional Create Stereotype in the Rules

The motivation and reasoning for the optional create stereotype is given in Sec-
tion 6.2.3 as well as an example for the TRIMoS rule with optional create objects
is depicted in Figure A.5. Section 6.2.5 also explains why the compound production
with optional create as in Figure 6.3 is not equal with a combination of the following
two rules. Both rules have instead of optional create objects: first, postcondition
objects (the object le in Figure 6.1); and second, precondition objects (the object le
in Figure 6.3 being precondition and not optional create).

The initial matching algorithm does not deal with the TRIMoS rules with op-
tional create stereotype objects. We refine the algorithm to cope with this stereo-
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type. The implementation of the optional create stereotype introduces a greater
computational complexity for matching than other stereotypes. The search for the
objects which might satisfy the optional create stereotype rule elements to complete
the match on the other side is more complex. This will be discussed below.

The first phase of the matching algorithm is not changed. The example of the
change corresponding to the rule with optional create objects can be found in Fig-
ure 7.5. After the location element le is connected to the location l2 the matches
m7 and c9 are created to mark the correspondence of the change to the location
element creation rule in Figure A.5. At this point the objects m8, c10, d4, p7, e4,
and p8 do not exist yet.

The algorithm proceeds with the second phase by searching the preconditions
on the right-hand side. The preconditions for the rule are found (graph cell d4 in
Figure 7.5) and matched with a match (match m8 in Figure 7.5), which is linked to
the match on the left-hand side (matches m7 and m8 are linked in Figure 7.5).

On the right-hand side the objects corresponding to optional create rule elements
are treted as postcondition objects, if the rule is applied first time. The instances
corresponding to rule objects with optional create stereotype have to be created
similarly to the initial matching algorithm together with the objects corresponding
to the postconditions of the rule. This is done if the location element le is connected
to location l in Figure 7.5.

If objects corresponding to the optional create stereotype already exist, they
are not created, but treated as precondition objects. Hence, the second phase of
the matching algorithm must be modified in the part where completed matches
are created and completed on the right-hand side. For these means the search is
performed similar to the preconditions search for rules with disjoint preconditions
to find correct preconditions on the right-hand side model.

As mentioned before, in the second phase the preconditions for the right-hand
side production are found and matched with a match (the match m8 in Figure 7.5).
There is an empty completed match created on the right-hand side in correspondence
of the completed match on the left-hand side (the completed match c10 is created
and linked with c9, at this point c10 has no links to objects d3, p8, e4, or p7 yet
in Figure 7.5). The next steps differ from the initial matching algorithm. If the
rule matched on the left-hand side has elements with optional create stereotype, the
candidates for objects corresponding to optional create rule elements (in this case
preconditions) on the right-hand side are searched using the completed match on the
left-hand side (the completed match c9 in Figure 7.5). This is also a difference to
the search in the case of disjoint preconditions. The search to find objects matching
the optional create rule elements on the right-hand side is not performed using the
parent match of the completed match on the left-hand side, but using the completed
match itself.

First, the instances (the location element le in Figure 7.5) are acquired from the
completed match on the left-hand side (the completed match c9 in Figure 7.5). All
the completed matches related to the instances are found on the left-hand side (the
completed matches c5 and c9 in Figure 7.5). The corresponding linked completed
matches are found on the right-hand side (the completed matches c6 and c10 in
Figure 7.5). The instances of the completed matches on the right-hand side are
considered as candidates for optional create objects in the role of preconditions of the
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rule application on the right-hand side (the objects p3, e2, p4, and d3 in Figure 7.5,
the completed match c10 has no references to post conditions yet). These instances
are added to the candidate set as candidates for preconditions.

After the candidates are found on the right-hand side for instances corresponding
to optional create rule elements, a temporary match on the right-hand side is created.
This temporary match is used to find the preconditions satisfying the rule with
optional create elements. The temporary match is the copy of the match (the match
m8 in Figure 7.5) on the right-hand side, because this match is already matching
the normal preconditions of the rule application.

The rule used for matching is also changed. The optional create rule objects are
set to be preconditions and a candidate set rule object is added having links only to
the rule elements, which had the optional create stereotype before. The change is
similar like in Figure 7.8, but the candidate set rule object c is linked with optional
create rule objects (which were changed to precondition objects).

Then the rule is used to search the preconditions and the candidate set is used
as a root object to begin the search. If the candidate set (containing objects p3,
e2, p4, and d3 in Figure 7.5) matches the corresponding candidate set rule object,
the suitable combination of the candidates are added to a temporary match to
represent preconditions (the graph cell d3 in Figure 7.5 is linked with a temporary
match). Thus, if the search is successful, the temporary match contains the normal
preconditions for the rule application, but also the instances which correspond to the
optional create rule objects. If this matching fails the temporary match is destroyed.

After the search the rule is restored and the candidate set is removed from the
temporary match. At this point the preconditions are found (the objects d4 and d3
in Figure 7.5) to complete the matching by creating the missing model objects for
the right-hand side model. If temporary match is not destroyed, the new completed
match on the right-hand side will have the temporary match as its parent match
(the completed match c10 in Figure 7.5 has the temporary match as its parent).

The completed match is completed without objects corresponding to the optional
create rule objects (the objects p7, e4, and p8 are created and linked with completed
match c10 in Figure 7.5). If the temporary match is destroyed, the new completed
match will have the match representing normal preconditions as its parent. The
completed match is completed also with objects corresponding to the optional create
rule objects (this is the case when p3, e2, p4, and d3 are created in Figure 7.5).

If the temporary match is used, and it is set as a parent for the new completed
match, the instances corresponding to optional create objects are moved from the
temporary match to the new completed match, because they do not represent nor-
mal preconditions (the graph cell d3 is not linked with temporary match, but with
completed match c10 in Figure 7.5). Thus, the model instances corresponding to
the optional create rule elements are always matched with completed matches. The
summary of the changes are given in Phase 2 steps 1 and 2 of the matching algorithm
in Section 7.6.
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7.5 Deletion of Model Elements

A synchronisation mechanism must handle also removal of the objects from synchro-
nised models. The initial matching algorithm does not handle the synchronisation
of deletions. It is extended by a validation step, which checks if the matches are still
consistent with the model side they are related to. Every deletion of some object
from the model results in fired property change events by the objects related to the
destroyed object.

The change event is caught by some match listener. The match listener triggers
a matching algorithm to validate the match it is related to. The matching algorithm
performs a validation check on the match. We check if the TRIMoS rule correspond-
ing to the match object still applies on the objects related to the match, i.e. if the
changed model part corresponds to the rule side. The match is removed if it does not
have relations to the objects it should have. The linked matches are also removed.
The objects related to the linked matches are also removed, if they are not matched
by other completed matches. The changes summarizing the validation phase of the
matching algorithm are given Section 7.6.

This kind of a deletion mechanism considers the TRIMoS rule as a unit of dele-
tion. If deletion appears on the left side destroying a matching of some rule, the
corresponding structures matching the rules right-hand side are removed completely
from the right-hand side model. The objects related to some other rule applica-
tion (matched with other matches) are not removed from the right-hand side model.
This kind of deletion behaviour can also be seen as a direct result of the monotonic
compound productions used in TRIMoS rules.

7.6 Matching Algorithm

• Validation Phase. The match / completed match is validated. If it is not valid:

1. the instances of the linked matches are removed if they are not matched
with some completed match,

2. the linked matches are removed,

3. the match is removed,

4. if the match is a completed match, the parent match is removed, if the
parent match does not have any other completed matches as its children.

• Phase 1. In the model where the change occurs (the left-hand side), it is con-
sidered, if the change matches some rule. No candidate set is needed since the
search is done on this side also using the postcondition links for the precon-
ditions and the objects corresponding to optional create are treated also as
postconditions:

1. the changed context is matched with all rules to see if the preconditions
of the rule match,

2. the postconditions of the rules are also checked, i.e. if the rule matches
on the left-hand side together with its preconditions and post conditions
to discover if the change corresponds to the production,
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3. the objects corresponding to the pre- and postconditions are matched
with a new completed match,

4. the completed match is split into a match matching precondition objects
and a completed match matching postcondition objects. (The instances
corresponding to the optional create rule elements are matched with the
completed match.)

• Phase 2. After the match is found on the left-hand side, the matches are found
and completed on the right-hand side – i.e. the changes on the left-hand side
model are propagated to the right-hand side model:

1. On the right-hand side the corresponding preconditions are searched for
the left-hand side precondition objects. The corresponding match is cre-
ated if not found. In the case of rule with disjoint preconditions:

(a) the right-hand side rule is changed to contain a TObject for the
candidate set which has links to all possible precondition rule objects;

(b) the candidate set is composed for preconditions searching over the
matches of the left side and linked matches on the right side;

(c) the right-hand side model objects are matched with the help of can-
didate set. If the match for preconditions is found, it is completed in
the next step.

2. The found match is completed with the completed match on the right-
hand side, i.e. the objects corresponding to the rule’s right-hand side
composite production’s postconditions are created in the right-hand side
model. In the case of the rule involving optional create rule elements:

(a) a temporary match is created for preconditions. It is a copy of the
match found in Phase 2 step 1. The variables from the completed
match created in Phase 1 step 4, are copied into the variables of the
temporary match.

(b) the right-hand side production of the TRIMoS rule is changed to
contain a TObject for a candidate set, which has links to all matched
once rule objects, these objects are also set to be precondition objects.

(c) The candidate set is composed for the right-hand side model instances
which might correspond to optional create rule objects.

(d) The temporary match is complemented with necessary preconditions
corresponding to the optional create objects by matching the changed
rule against the candidate set. If matching fails the temporary match
is removed.

(e) If matching in the previous step is successful, the temporary match
is assigned to be the parent of the new completed match

(f) The new completed match is completed, i.e. the objects correspond-
ing to postconditions of the rule are created into the right-hand side
model.

(g) The objects and variables corresponding to the optional create ob-
jects are moved down to the newly completed match. (The instances
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corresponding to the optional create rule elements are matched with
the completed match.)

(h) The clean up step. The temporary match is removed, the changed
rule is restored. The match found in Phase 2 step 1 is set to be the
parent match of the newly completed match on the right-hand side.

7.7 Adaptation of the JGraph API

TRIMoS is used to synchronize the eHome model instance and JGraph structures.
Therefore, the interfaces: PropertyChangeManager, AttributeAccessor, Instance-
Creator are implemented for the JGraph API. The eHome model does not need
specific implementations for these interfaces, because it follows the JavaBeans spec-
ification [Sun97] design guidelines and property change management conventions.
The JGraph API does not follow the JavaBeans specification – it has non-consistent
getter and setter methods, list attributes and its own change event management
mechanism. These differences have to be encapsulated into the adaptive classes
implementing the mentioned three interfaces to use JGraph API with TRIMoS.

7.7.1 JGraph API

The JGraph API [Com] is an open source API providing elaborate features to create
visual graphs and most importantly to customize them. The developer has the
freedom to develop a graph implementation with specific behaviour and visualisation
using JGraph. JGraph offers a set of useful features and examples to do that. This
API offers additionally default implementations which can be easily extended to meet
the specific needs of an application. JGraph is designed to be also a component in
the Java Swing framework, thus it is easy to use it together with Java Swing API
for visualisation in graphical user interfaces.

The JGraph class represents the graph. This class extends the Swing JCompo-
nent class being the visualisation component for the GUI development. This class
links the JGraph API with the Java Swing API. The GraphModel interface repre-
sents the graph model for the JGraph class. The graph model is the actual graph
consisting of nodes, ports, and edges. Edges can be connected with ports, which are
connected to the nodes. The interface GraphCell represents nodes in the graph, the
interface Edge respectively the edges, and the interface Port respectively the ports.
All these interfaces have default implementations: DefaultGraphModel, Default-
GraphCell, DefaultEdge, and DefaultPort.

The JGraph API has also one drawback – it is quite complicated to use. For
example, to create an edge between two graph cells, the following steps have to
be performed. A graph model, an element set and an attribute map are created.
Two graph cells are created and added to the element set. The attributes for both
cells are inserted into the attribute map. Two ports are added to the graph cells.
The edge object is created and added to the element set. The edge attributes are
inserted into the attribute map. A connection is created to connect the edge with
ports. Finally, the elements, attribute map, and connection set are added to the
graph model. If the graph model is added to the JGraph component, the two graph
cells and the edge between them are visualised on the JGraph component.
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7.7.2 Adaptation of the JGraph API

We have to encapsulate the above described complex procedures to create JGraph
cells and edges with simpler procedures. This enables us to specify simple compound
productions usable in TRIMoS rules as in Figure A.3. The JGraph API is adapted
for TRIMoS with implementing the following classes:

1. TrimosGraphModel extends and customises the JGraph DefaultGraphModel
class;

2. JGraphAttributeAccessor implements the TRIMoS AttributeAccessor in-
terface and adapts the accessor routines to read and write the fields in the
graph model. For example, the attribute ports at the DefaultGraphCell does
not exist in JGraph API, but is still used in TRIMoS rules (see Figure A.3).
Accessing of the ports attribute is redirected to the routines adding elements
to the graph model and reading the attributes of DefaultGraphCell objects.

3. JGraphInstanceCreator implements the TRIMoS InstanceCreator inter-
face. It adapts the instance creation and removal from the graph model;

4. JGraphPropertyChangeManager implements the PropertyChangeManager in-
terface from the TRIMoS framework. It adapts the graph change event mech-
anism of JGraph to be used by match listeners.

We consider the work amount of adapting the JGraph API considerably smaller
than programming the translators between the eHome model and JGraph structures.
In both cases the developer has to study the JGraph API. We suggest that, the
JGraph API should be used to adapt it for the TRIMoS framework, so the translators
can be specified with TRIMoS rules.

7.8 Summary

This chapter gave an overview of the implementation of the TRIMoS approach,
introduced in Chapter 6. We handled the general design of the TRIMoS framework,
the structures created during runtime, and also the implementation of matching
algorithm to consider essential rule types and stereotypes used in TRIMoS rules.
We also discussed the JGraph API and adaptations to use the JGraph API with
TRIMoS. The next section gives an overview on future work. It outlines how the
TRIMoS framework can be refined and improved.
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Chapter 8

Future Work

The future work is discussed for three different fields: eHome systems, TRIMoS
framework, and triple graph grammars.

8.1 eHome Systems

8.1.1 Refinement of the SCD-process

We consider the most promising research direction for the SCD-process refinement,
the application of parametric contracts [Reu01] in the automatic configuration phase.
The eHome services are developed as software components having a black-box spec-
ification. They offer a public interface for the system developer but no insight into
the mechanisms implemented inside the eHome service. The eHome services de-
veloped in the scope of the eHomeConfigurator project are of course open source.
Still, in perspective of the SCD-process for eHome systems, it is important that no
re-programming of the services takes place. The SCD-process is a software configu-
ration and not a development process.

Parametric contracts introduce so called grey-box approach for software compo-
nents. The black-box component is coupled with a parametric contract, a white-box
description of the software component. The parametric contract contains the in-
formation about the provided and required services inside the component. This
information can be used for the architectural dependency analysis, automatic com-
ponent adaptation, or quality of service predictions. One more important result on
this field is that parametric contracts can be generated directly from the software
component’s code.

Parametric contracts are typically specified using the finite state machine formal-
ism. The latest research results in the parametric contracts field [RHH05] introduce
the graph grammar based formalism and define the compositionality of parametric
contracts. These results are important for the eHome field because of two applica-
tion areas: the refinement of the automatic configuration phase of the SCD-process
and the development of eHome services.

The automatic configuration in the SCD-process considers currently the func-
tional composition of the eHome services. It works practically with the semantic
labels of service functionalities. The automatic configuration does not perform ar-
chitectural analysis or resource resolution on the software component level. To
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improve the automatic configuration is the point, where application of parametric
contracts could prove extremely useful.

Parametric contracts could be used by the SCD-process to perform automatic
configuration of the eHome services regarding the architecture of the services, used
communication protocols, and resource requirements. This kind of process would be
able to compose eHome services provided by different parties requiring no communi-
cation and development overhead. This would also allow to detect conflicts between
the services already during the configuration phase of the SCD-process.

8.1.2 Development of eHome Services

eHome services are component based. The black-box nature of eHome services
protects the intellectual property of the service creator. Still, there is a conflict
between the re-usability of the components and information requirement for the
reuse to take place. The motivation behind the parametric contracts is to provide
an appropriate level of the information needed for the reuse of software components.

Currently, the eHome services are developed by-hand. We see two advancement
possibilities for the development process for eHome services. First, the application
of generic techniques in eHome service development. Second, pairing the service
development with the generation of parametric contracts for the services.

We used the Fujaba tool suite to develop our eHome model. The same tool
was used to develop the automatic configuration routines for the SCD-process. We
consider that eHome services could also be developed entirely with Fujaba. Fujaba
is a graph rewriting system, thus it might be possible that the graph grammar
based approach of parametric contracts could be included in the tool suite. This
would allow the eHome service developer to create the services using model-driven
development techniques and generate automatically the parametric contracts out of
the service component’s source code.

8.1.3 The eHomeConfigurator Project

The future work on eHomeConfigurator project should include the tool support
development for the SCD-process refinements, the development of the open-source
eHome services, and the support for the research done in the eHome group.

The eHomeConfigurator tool in the project can be considered as a platform to
develop end-user applications for the eHome field. For example, to support eHome
business, there is a need for a special tool for service providers for the service specifi-
cation. The customers requesting an eHome should have a simple tool to specify their
home environment. The companies offering the eHome deployment service should
have a tool for the configuration of the eHome system and automatic deployment.
They should also have a tool generating automatic installation instructions for the
hardware in eHome. The deployment editor in the eHomeConfigurator and DOBS
could be together a source base and a test-aid for the development of the graphical
user interface for the eHome system or simple interfaces for the inhabitants of the
eHome.

Considering the organizational aspects, the eHomeConfigurator project should
find more industrial partners besides the inHaus Duisburg [inH05]. The project
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should find the means to introduce itself for the open-source community. This way
we could find enthusiastic developing contributors interested in the eHome field.
Our project should also be linked with the Amigo project [Ami05], which is an
Integrated Project (IP) funded by the European Commission in the Sixth Framework
Programme (see Section 9.1.1).

8.1.4 Security Aspects in eHome Systems

The topics security and privacy are not thoroughly researched in the eHome field.
These topics are essential, because this computer-science field deals with the most
private aspect of the every-day life – the home environment. Also the eHome should
be the inhabitant’s castle and not a pitfall. The eHome system must be reliable and
secure. These systems can not malfunction and can not enable unauthorized access
to the home environment and inhabitants privacy.

The eHomeConfigurator project comprises several security risks. The first risk
is introduced by the design of the eHome model (EhService interface in the model).
The second risk lies in the way how current eHome services work with the eHome
model. There could be a possible attack designed on the eHome system using a
malicious eHome service. This service might compromise the eHome model instance
in the eHome system or shut down essential services on the service gateway. The
eHome model instance is still unprotected and the resource management does not
consider the authorisation aspects. This problem should be addressed as soon as
possible, to make a next step towards an eHomeConfigurator project which satisfies
the security requirements in reality.

8.2 TRIMoS

The further development of the TRIMoS framework should head in the direction
to create a well tested and easily usable TRIMoS API. There is still work to be
done like bug-fixing, performance testing, and writing the documentation. The
TRIMoS system should also be optimized considering the memory usage and the
synchronisation mechanism itself. The matching algorithm can be optimized for
example, to use better strategies for rule selection during the matching.

The TRIMoS framework could be integrated with REclipse project [Pro05]. This
project would provide an advanced TGG editor (TGGEditor module of the REclipse
framework) for the TRIMoS rule specification. The current TRIMoS editor has
limited features and a primitive graphical user interface. TRIMoS could also be
used as a basis for research on TGG’s discussed in the next section.

The model element deletion mechanism currently implemented in TRIMoS (see
Section 7.5) considers the TRIMoS rule as a unit for deletion. We could study the
application of the destroy stereotype for TRIMoS rules. This stereotype is used
in Fujaba story diagrams to indicate transformations removing elements from the
model. This development would of course conflict with the monotonic nature of
TGG productions.

There is also a non-determinism problem to be addressed in TRIMoS. The frame-
work does not implement any fail-safe, if rules are conflicting in the interpreted rule
set. There could be some approach based on heuristics to solve this problem. The
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solution through user interaction is not appropriate, because TRIMoS is a system
for reactive transformations. The user interaction based conflict resolution would in-
troduce a communication overhead between the application employing the TRIMoS
and the end-user of this application.

8.3 Triple Graph Grammars

The TRIMoS approach introduces simpler triple graph grammar rules resembling by
appearance the pair grammars. The rules use more compact compound productions
to specify the rule’s left- and right-hand side. The third graph production in between
is not modelled explicitly. It is fixed to one particular form and is created during
the runtime of the TRIMoS framework.

Because of the implicit modelling of the correspondence graph, TRIMoS rules
lack the expressiveness of the classical TGG approach. Still, they are applicable in
the graphical user interface development. They can also be used for synchronisation
of object models having similar structure. The TRIMoS approach adds an aspect of
simplicity for TGG theory.

The general TGG approach should adopt the idea of optional correspondence
production in the TGG rules. This is important in the perspective of simpler TGG
rules. The specification of the correspondence graph should be implicit for simpler
transformation cases. The correspondence transformations could be defined explic-
itly for more complex cases. The systems implementing the TGG approach should
be able to interpret the rules with implicit and explicit correspondence productions.

Triple graph grammars are used as a basis for integration, translation, and syn-
chronisation frameworks. These frameworks deal with transformations and transla-
tions of model structures. But models often employ behaviour which has no impact
on the model’s structure. There are functions using the model as an input and
implementing scientific or statistical calculations, or calculations for status reports.
These kind of functions or methods in the synchronized models could also be related
with each other. Therefore, another research direction for TGG could be the linking
of arbitrary method calls, which do not affect the model structure.

8.4 Summary

In this chapter we gave an overview on the ideas for future research and work. The
ideas cover two computer science areas: the eHomes and triple graph grammars.
Both fields are relatively young having a lot of research work ahead. We think that
the ideas presented in this chapter could be very interesting and valuable direction
indicators to discover the unknown. The next chapter discusses the related work for
these two fields.
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Related Work

This chapter handles the related work to this thesis. We will discuss projects similar
to the eHomeConfigurator project and the tool support for eHome processes. We will
discuss the work related to the development tools we used in the eHomeConfigurator
project and also related work for the TRIMoS approach.

9.1 eHome Systems

The field of smart homes, i.e. eHomes, is a sub-area of the ubiquitous comput-
ing research field. The term ubiquitous computing was introduced by Mark Weiser
in [Wei91]. It denotes a computer science field researching possibilities to apply
computing technologies everywhere in the everyday environment using micro con-
trollers and sensor networks. In this case, the computing technology would be as
common in our environment as “writing”. For example, we currently see text written
everywhere: on posters, on pieces of paper, or on door signs. Ubiquitous computing
would introduce micro controllers into our environment, into doors, floors, objects
in our living space, to get the information from the environment. The important
factor of ubiquitous computing is that it is a calm technology [WB98], because the
computing technology in the environment should not be in the centre of the users
attention, but run in the background, offering the information on demand.

9.1.1 Intelligent Home Projects

There are numerous projects dealing with eHome systems. The Intelligent House
Duisburg Innovation Center (inHaus) [inH05] is one example of a project with big
industrial partners, such as Sony, Viessmann, or Volkswagen. This project’s main
research is done in the inHaus facility in Duisburg, which includes a residential home,
a workshop, a networked car, and a networked garden. This is a complete test site
for eHome systems. inHaus is also a very valuable partner of our eHome group,
offering possibilities to test the eHome scenarios and tools developed within the
group. There already have been successful tests performed in cooperation between
the eHome group and inHaus in the residential home of the inHaus project.

Two other similar projects of a smart home environment are the industrial project
T-Com Haus [T-C05] and the privately financed project 213 Smarthouse [Sch05a].
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A promising project funded by the European Commission is Amigo [Ami05], aim-
ing to develop open, standardized, interoperable middleware, and intelligent user
services for the networked home environment. The Amigo project unites different
partners such as Philips Research, France Telecom, Fraunhofer IMS, or Microsoft.
This project has a budget of 24 million euros.

Additionally, there is The Adaptive House project [Moz98], relying heavily on
the artificial intelligence technologies. This project tries to create an adaptive home
environment, which tracks the inhabitant’s behaviour using different sensors, cam-
eras, and microphones. The neural-network based home system tries to render the
user interfaces useless. It controls the home environment relying entirely on the
assumptions of inhabitant’s current and future behaviour.

The difference between the eHomeConfigurator project and projects mentioned
above is that the eHomeConfigurator project focuses only on the software devel-
opment process and more importantly software configuration process for eHome
systems. The only hardware platform developed in the eHomeConfigurator project
are the two eHome demonstrators, for testing purposes. These demonstrators are
miniature eHome models, with minor construction costs for the materials and hard-
ware.

There are also other eHome processes related to the SCD-process. The eHome
group also researches business processes surrounding the SCD-process [Kir05]. Addi-
tionally, the eHome group researches the problematics of virtual eHomes and trans-
port processes for inhabitant profiles1.

9.1.2 Tool Support for eHome Systems

Tool support in the field of eHome systems focuses on graphical user interfaces and
on easier development of eHome services. When considering the eHomeConfigurator
tool and the SCD-process, there seems to be no other approach dealing with software
configuration for eHome systems in the process level.

For example, the following two approaches support user interface development
for eHome systems. The open source SUPPLE toolkit [GW04] developed at the
University of Washington. It deals with the automatic generation of user interfaces
for display devices used in ubiquitous environments. SUPPLE uses decision-theoretic
optimization to render an interface from an abstract functional specification, an
interchangeable device model, and an user model.

The SmartHome User Interface project [vDY96] creates an intuitive web-based
interface to an automated household. The idea of the project is to create an interface
for the household, which is available over the Internet all over the world. The
SUPPLE and the SmartHome User Interface projects are very similar to work done
in the eHome group on interactive user interfaces in eHome systems [Gab04].

The Equip Component Toolkit (ECT) [GT04] was created for development of
applications in ubiquitous computing fields, involving designers and users in the
development process. Users are supported by graphical tools, which provide vari-
ous representations of the running environment, plus facilities for monitoring, and

1The virtual eHome and inhabitant profiles are new topics handled in the eHome group. There
are no publications yet.
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(re)configuration of the applications. This toolkit shares with the eHomeConfigura-
tor project the idea of lowering the costs of smart home systems. ECT introduces
cheaper and generic ways to develop and reconfigure services running in an ubiqui-
tous computing environment. Nevertheless, ECT introduces a software development
process, and not an automated software configuration process like the SCD-process.

9.2 Model-Driven Development

It is common for the scientific research of a field that many ideas are reinvented.
This is also true in the case of software engineering, when looking at the idea of gen-
erating executable code according to models. For example, the modelling language
SDL [EHS97], known from telecommunication systems, existed already in early sev-
enties. It is a specification language for the telecommunication area. It incorporates
ideas of model-oriented specification and executable specifications. As second exam-
ple, software product line development processes [FI] are using a two step approach:
first designing a language for specifying family members and secondly defining the
automatic process to produce family members.

The ideas of modelling and automatic code generation can also be found in graph
rewriting systems such as PROGRES [Sch91] developed at our Department of Com-
puter Science 3 of the RWTH Aachen University, in the late eighties. The system
consists of the PROGRES language and the PROGRES programming environment.
The language is a strongly typed specification language for complex data structures.
The programming environment consists of a syntax-directed editor and a code gener-
ator for C-code. The Fujaba tool suite [KNNZ99] was developed in the late nineties
initially by people active also in the PROGRES development. Fujaba uses UML
modelling and generates fully executable Java code.

The recent release from OMG [Obj02] is called MDA: the development process
which also fully relies on modelling and code generation. Despite of the loops in the
software engineering research history, it is clear that software engineering is moving
towards the idea of model-driven development. The TRIMoS framework developed
in the scope of this thesis is also a tool supporting model-driven development tech-
niques.

9.3 Triple Graph Rewriting Systems

The theoretical background in Chapter 5 gave an overview on the underlying the-
oretical concepts for the TRIMoS framework. The TGG implementations and ap-
proaches can be divided into two main categories: batch-oriented and incremental
rewriting systems. Batch-oriented systems transform an input graph to another
graph defined by a different graph grammar than the input graph. The incremental
systems allow translation of the two graphs step-wise, by starting the translation
when demanded by the user, analysing the two graphs, and generating the missing
structures. TRIMoS is an incremental synchronisation framework, but more specif-
ically a reactive system. This means that TRIMoS propagates the transformations
in between synchronized models automatically after the transformation takes place.
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One of the earliest implementations of the TGG translation approach was imple-
mented in the scope of the IPSEN project [Nag96]. IPSEN was a graph-based inte-
grated software engineering environment, including implementations for the graph
transformation and the TGG translation approaches [Sch94].

There is an incremental TGG approach for integration of engineering tools de-
veloped in our department [BHW05]. This approach considers the documents as
the communication medium between the engineering tools. Thus the integration
between the tools means that changes are propagated between the tools via a set
of inter-dependent design documents, which have to be kept consistent with each
other. This approach includes user interaction for conflict resolution of rules2.

A very similar approach to the TRIMoS framework is described in [Wag01]. This
TGG-based system can be used to transform models. Like TRIMoS, it is Fujaba-
related, does not perform detection of conflicting rules, and does not include user
interaction. The big difference between the TRIMoS framework and this approach
is the semantics of the rules (see Section 6.2.5) and that the TRIMoS framework is
reactive synchronisation framework.

9.4 Summary

In this chapter we discussed the related work to the following topics: the eHomeCon-
figurator project, the model-driven development tools we use in the project, and the
TRIMoS framework. The related work in the field of eHome systems targets heavily
the hardware and infrastructure development for eHomes. The software engineers
in this field deal mostly with eHome service development. Our research group con-
centrates on the general software engineering process for eHome systems. We try
to break the cost barrier in the eHome market created by the expensive software
development processes. We are replacing the software development with software
configuration process for eHome systems. This is a new research approach in the
eHome field.

The Fujaba tool suite used in the eHomeConfigurator project has proven itself
to be of a great value. This tool has been an inspiration to research the model-
driven development techniques to solve the problems at hand. We have developed a
TRIMoS framework to create bidirectional translators for object models. This TGG
based framework differs with its reactive nature, compact and simple rules from other
TGG based approaches. The TRIMoS framework adds the reactive translation and
implicit correspondence graph aspects to the TGG field of computer science.

2The non-determinism problem described in Chapter 5.
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Conclusion

10.1 Summary

This thesis is a contribution to eHome systems and model-driven development in
the field of computer science. The work with eHome systems gave us an eHome
model and the work in the model-driven development field resulted in the develop-
ment of the triple graph grammar based TRIMoS translation and synchronisation
framework. The efforts in these two fields are interconnected in the development
of the eHomeConfigurator tool supporting the eHome model instance’s transforma-
tions during the SCD-process. The TRIMoS framework was developed to address
the translator problem that occurred while implementing the eHomeConfigurator
tool.

This thesis begins with an introduction and motivation for the research in two
fields. First, the problematics in eHome systems and low-cost specification, config-
uration, and deployment process (SCD-process) for eHome systems are introduced.
This is followed by a discussion of the eHome model, its technical solution and struc-
ture. The transformations and life cycle of the eHome model instance are regarded
in the perspective of the SCD-process.

Chapter 4 on tool support for the SCD-process describes the development of the
eHomeConfigurator tool and how this tool is put into use during the SCD-process.
The structure of the tool and implementation of modules developed in the scope
of this thesis are discussed in more detail. The discussion explains the translator
problem in the context of the Specificator module development.

Before considering the solution approach for the translator development problem,
the graph theory behind the solution approach is introduced. The solution approach
is called TRIMoS and it is dealt with in two parts: the approach itself with intro-
duced additions to the triple graph grammar theory, and the implementation of the
TRIMoS framework. The discussion on the implementation of the framework con-
centrates on the design of the framework and matching algorithm, used to interpret
the TGG transformation rules.

The thesis ends with a discussion on the future and related work, and this con-
clusion.
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10.2 Relevance

The main results of this thesis are the eHome model, the eHomeConfigurator tool
and the TRIMoS framework.

10.2.1 eHome Model

The eHome model is a model reflecting eHomes in reality. The model was refined
during the past two years and has proved itself as an appropriate model for eHome
systems. The eHome model provides a structure, which covers the general aspects
of eHomes. The derived eHome model instance contains the specific aspects of a
particular eHome. The general and specific aspects facilitate the low-cost SCD-
process for eHome systems which helps to break the price barrier on the eHome
mass market. The eHome model is an enabling factor for the SCD-process and for
the context aware eHome services.

10.2.2 eHomeConfigurator

The eHomeConfigurator tool was developed to support the SCD-process and the
eHome model instance transformations during the process. The eHomeConfigurator
is a proof of the applicability of the eHome model and validity of the SCD-process to
be used for eHome systems. Furthermore, with its open-source nature, the eHome-
Configurator tool offers a good source-base for future tool development.

10.2.3 TRIMoS

The TRIMoS framework is a powerful TGG-based approach designed according to
the requirements of software developers. This framework marks an important step
towards simpler and more intuitive triple graph grammar rules. It uses a familiar
UML notation, more compact and comprehensive compound productions, and re-
quires no explicit modelling of the correspondence productions in TGG rules. These
features facilitate a broader application of the TGGs in model-driven development
because of better acceptance among software engineers.

10.3 Outlook

The future work on the eHomeConfigurator project and the TRIMoS framework
may have several directions. One research direction for the eHomeConfigurator
project could be the application of parametric contracts in the configuration phase
of the SCD-process and in the eHome service development. Parametric contracts
provide the means for service architecture analysis, composition analysis and au-
tomatic adaptation of eHome services during the SCD-process. This brings the
automatic configuration of the SCD-process from the semantic label level to the
level of the software components and provides reliable configurations with the guar-
anteed quality of service. The application of parametric contracts also facilitates the
generic eHome service development.
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The eHomeConfigurator tool itself is a promising basis for further tool support
development for eHome systems. It can be used as a basis for user interfaces or
service development, configuration, and deployment tools. The tool can also be
extended to support distributed eHomes and virtual eHomes. The application of the
parametric contracts and further development would extend the eHomeConfigurator
to general software configuration tool supporting, for example, the processes in the
automotive field, or embedded systems.

The work on TRIMoS framework might continue developing a TRIMoS Java API
applicable in the software industry. This requires additional testing, optimization,
and development work. The core of the TRIMoS framework could be integrated into
the REclipse project [Pro05] to employ a better rule editor. The TRIMoS can also be
extended to consider optionally the rules with explicit correspondence production
to offer the complete expression power of the TGG rules, while maintaining the
simplicity of the TRIMoS rules.
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Appendix A

TRIMoS Rules for the
Environment Editor

This appendix gives a TRIMoS rule set for the environment editor translator of
the eHomeConfigurator tool. The type graph for the rules is in Figure 3.4. The
initialisation rule has less elements as it should have in real application. For exam-
ple, on the left-hand side, there should be a DataHolder object having a link to the
e : Environment object to indicate that the environment object is registered in data
holder. On the right hand-side there are missing objects for the EnvironmentEdi-
torPanel, the JGraph and the TrimosGraphModel classes. There should be a link
between the d : DefaultGraphCell object and the TrimosGraphModel object.

e : Environment

<<create>>

name = newName userObject = newName

d : DefaultGraphCell

<<create>>

eHome model JGraph model

Figure A.1: An initialisation rule for the environment editor translator.
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d : Device

<<create>>

name = newName

userObject = newName

e.devices
<<create>>

d1.ports
<<create>>

e.source
<<create>>

e.target
<<create>>

d2 : DefaultGraphCell

<<create>> d2.ports
<<create>>

d1 : DefaultGraphCelle : EnvironmentElement

p1 : DefaultPort

<<create>>

e : DefaultEdge

<<create>>

p2 : DefaultPort

<<create>>

eHome model JGraph model

Figure A.2: A rule rule to create devices.
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l : Location

<<create>>

name = newName

userObject = newName

e.locations
<<create>>

d1.ports
<<create>>

e.source
<<create>>

e.target
<<create>>

d2 : DefaultGraphCell

<<create>> d2.ports
<<create>>

d1 : DefaultGraphCelle : Environment

p1 : DefaultPort

<<create>>

e : DefaultEdge

<<create>>

p2 : DefaultPort

<<create>>

eHome model JGraph model

Figure A.3: A rule to create locations.
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userObject = newName

l.subLocations
<<create>>

d1.ports
<<create>>

e.source
<<create>>

e.target
<<create>>

d2 : DefaultGraphCell

<<optional>> d2.ports
<<create>>

d1 : DefaultGraphCelll : Location

p1 : DefaultPort

<<create>>

e : DefaultEdge

<<create>>

p2 : DefaultPort

<<create>>

eHome model JGraph model

l2 : Location

<<optional>>

name = newName

Figure A.4: A rule to create sub-locations.
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le : LocationElement

<<optional>>

name = newName

userObject = newName

l.locationElements
<<create>>

d1.ports
<<create>>

e.source
<<create>>

e.target
<<create>>

d2 : DefaultGraphCell

<<optional>> d2.ports
<<create>>

d1 : DefaultGraphCelll : Location

p1 : DefaultPort

<<create>>

e : DefaultEdge

<<create>>

p2 : DefaultPort

<<create>>

eHome model JGraph model

Figure A.5: A rule to create location elements.
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