
Model Transformations in eHome
Systems

Priit Salumaa

Master Thesis
Aachen, 11. November 2005

Submitted to the Department of Computer Science III
RWTH Aachen University

Corrector: Prof. Dr.-Ing. Manfred Nagl
External Corrector: Prof. Dr. rer. nat. Otto Spaniol

Supervisor: Dipl.-Inform. Ulrich Norbisrath

ii

Mu isa ütles kord: “Elus viivad edasi
vaid julged otsused.”

My father once said: “Only brave decisions
will take you forward in life.”

iii

Acknowledgements

This work has been one of the challenges of my life. I hereby thank sincerely the
people who have supported and guided me from my heart:

See töö ei oleks saanud teoks ilma inimesteta mu kodus, Eestis. See on olnud üks mu
elu raskemaid ülesandeid ning kestnud viimased kaks aastat. Ma poleks nii kaugele
jõudnud oma perekonna, sugulaste ja sõprade toeta. Siinkohal tahangi ma teid kõiki
kogu südamest tänada. Tänu teile, mu isa ja ema, teie kasvatusele, olen ma see, kes
olen ning kirjutan neid sõnu siin. Teie olete õpetanud mind elama ja lükanud sahana
lahti tee, mis praeguseks on toonud mind siia, kodust nii kaugele. Mu õde-venda
Liisi ja Paul, te olete olnud mulle alati seltsiks ja näidanud, mis asi on südametun-
nistus ning mida tähendab kellegi eest hoolitseda. Ma tänan teid, mu kallid vanaisa
ja vanaema, kes te olete mind alati hoidnud ja õpetanud haridust väärtustama. Ma
tahan ka tänada oma sõpru Sveni, Jaanust, Vahurit ja Askot. Te olete mind pan-
nud vaimustuma arvutiteadusest, aidanud rasketel hetkedel ning ühtlasi näidanud,
et peale töö ja kooli on elus ka muud.

Kõiki inimesi, kellele ma tänu võlgnen, või kes mulle olulised on, on üsna või-
matu üles lugeda. Selleks kuluks veel sama palju paberit ja sõnu, kui mu magistritöö
võtab. Seega, ma tänan teid kõiki, oma tuttavaid ja sõpru Eestis või eestlasi Sak-
samaal, kes te olete olnud mulle toeks ja pere eest.

I want to thank all the people who have supported and guided me through these
two years in Germany. It has been a wonderful experience here to work with you
or share the kitchen. My special gratitude belongs to my academic advisor Ulrich
Norbisrath. Ulrich, you are more than a mentor and a colleague, you have become
a dear friend to me during these years.

I want to thank Prof. Dr. Ing. Manfred Nagl who introduced and accepted me
to the Department of Computer Science 3 at the RWTH Aachen University. He
and Prof. Dr. rer. nat. Otto Spaniol have also been my advisors in the Graduate
School “Software for Mobile Communication”. Participating in the graduate school
has given a great additional academic value to my studies. I want to thank all the
people from our eHome group for their support and cooperation. Special thanks go to
people who have supported me in writing this thesis: from Kassel University – Prof.
Dr. Albert Zündorf, Christian Schneider, and Leif Geiger; from our department
– Adam Malik, Liviana Manolescu, Michael Kirchof, Erhard Schultchen, Christof
Mosler, Daniel Retkowitz, Ibrahim Armac, Tim Schwerdtner, and Daniel Rose; from
Estonia – Merily Plado and Redi Koobak. I would also like to thank the DAAD and
Siemens for providing me with financial support for my Master’s studies.

iv

v

I affirm thereby that I composed this work independently and used no
other sources and tools but the specified ones and that I marked all
quotes as such.

Hiermit versichere ich, dass ich die Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zi-
tate kenntlich gemacht habe.

Aachen, 11. November 2005 Priit Salumaa

vi

Priit Salumaa

Model Transformations in eHome Systems

Die in dieser Arbeit erwähnten Verfahren sowie Soft- und Hardwarebezeichnungen sind in
den meisten Fällen auch eingetragene Warenzeichen und unterliegen als solche den
gesetzlichen Bestimmungen.

Contents

1 Introduction 1
1.1 Structure of the Work . 3

2 Motivation 5
2.1 Example Scenarios . 5

2.1.1 First development scenario for eHomeConfigurator 6
2.1.2 Improved development scenario for eHomeConfigurator . . . 9

2.2 Motivation Conclusion . 10
2.3 Solution Sketch . 11
2.4 Summary . 12

3 The eHome Model and the SCD-process 13
3.1 The eHome System . 13
3.2 The SCD-process for eHome Systems 14
3.3 The eHome Model . 16
3.4 Technical Solution for the eHome Model 16
3.5 Contents of the eHome Model . 17

3.5.1 Functionality Context . 18
3.5.2 Device Definition Context . 18
3.5.3 Environment Context . 19
3.5.4 Service Context . 20
3.5.5 Service Instance Context . 22
3.5.6 Inhabitant Context . 24

3.6 The Life Cycle of the eHome Model Instance 25
3.6.1 Illustrative Example of the SCD-process Application Case . . 26
3.6.2 Changes in the eHome Model Instance Structure During the

Specification Phase . 27
3.6.3 Changes in the eHome Model Instance Structure During the

Configuration Phase . 32
3.6.4 Changes in the eHome Model Instance Structure During the

Deployment Phase . 37
3.6.5 Changes in the eHome Model Instance Structure During the

Runtime of the eHome System 38
3.7 Summary . 40

vii

viii CONTENTS

4 The Tool Support for the SCD-process 41
4.1 The eHomeConfigurator Tool . 42
4.2 The Implementation of the DataHolder Module 44
4.3 The Implementation of the Specificator Module 45

4.3.1 The Translators in the eHomeConfigurator Tool 47
4.3.2 The Generic Activity Invocation Mechanism 49

4.4 The Main Problem at the Specificator module Development 52
4.5 The Auto-Configurator Module . 52
4.6 The Implementation of the Deployer Module 53
4.7 The eHomeConfigurator in the Action 55

4.7.1 Specification with the eHomeConfigurator 55
4.7.2 Automatic Configuration of eHome Service Software with the

eHomeConfigurator . 56
4.7.3 Deployment of the eHome Service Configuration and Monitor-

ing of the eHome System Runtime with the eHomeConfigurator 57
4.8 Summary . 59

5 Theoretical Background 61
5.1 Graph Grammars . 61
5.2 Triple Graph Grammars (TGG) . 64

6 TRIMoS TGG Approach 71
6.1 Motivation . 72
6.2 TRIMoS TGG Transformation Rules 72

6.2.1 Compound Productions . 73
6.2.2 Implicit Correspondence Between the Side Models 74
6.2.3 Rule Element Stereotypes . 75
6.2.4 Initialisation Rule . 77
6.2.5 Semantics . 78
6.2.6 Runtime Execution of the TRIMoS Rules 78

6.3 Summary . 79

7 TRIMoS Implementation 81
7.1 Framework . 81

7.1.1 The Design of the Framework 82
7.1.2 The Correspondence Graph During Runtime of the Framework 86

7.2 Initial Matching Algorithm . 90
7.3 Disjoint Preconditions . 91
7.4 Optional Create Stereotype in the Rules 95
7.5 Deletion of Model Elements . 98
7.6 Matching Algorithm . 98
7.7 Adaptation of the JGraph API . 100

7.7.1 JGraph API . 100
7.7.2 Adaptation of the JGraph API 101

7.8 Summary . 101

CONTENTS ix

8 Future Work 103
8.1 eHome Systems . 103

8.1.1 Refinement of the SCD-process 103
8.1.2 Development of eHome Services 104
8.1.3 The eHomeConfigurator Project 104
8.1.4 Security Aspects in eHome Systems 105

8.2 TRIMoS . 105
8.3 Triple Graph Grammars . 106
8.4 Summary . 106

9 Related Work 107
9.1 eHome Systems . 107

9.1.1 Intelligent Home Projects . 107
9.1.2 Tool Support for eHome Systems 108

9.2 Model-Driven Development . 109
9.3 Triple Graph Rewriting Systems . 109
9.4 Summary . 110

10 Conclusion 111
10.1 Summary . 111
10.2 Relevance . 112

10.2.1 eHome Model . 112
10.2.2 eHomeConfigurator . 112
10.2.3 TRIMoS . 112

10.3 Outlook . 112

A TRIMoS Rules for the Environment Editor 115

Chapter 1

Introduction

The modern trends in software engineering are looking towards more generic ap-
proaches for software development. The latest developments in the field of soft-
ware engineering bring us to advanced techniques like Model Driven Architecture
(MDA) [KWB03], visual languages, or graph-rewriting approaches. This is a logi-
cal development in the software engineering considering the history and evolution
of programming languages. After the machine code was invented, the programming
languages have evolved towards higher abstraction levels which has given us dynamic
addressing, variable names, reusable function declarations, object-orientation, design
patterns, or visual modelling. It is obvious that generations of programming lan-
guages have been developed to facilitate software development and this trend will
probably carry on through the whole evolution of software development. We refer
to the software development techniques, currently at the highest level of abstrac-
tion as model-driven development. Model-driven development relies completely on
modelling of software models and replaces programming with code generation.

The idea of model-driven development has not yet materialized for the software
development on a large scale, and is probably not applicable in every area of soft-
ware development. However, there are areas and application fields which use these
generic techniques successfully. For example, model-driven development techniques
are applied in the field of eHomes also known as smart homes. The present thesis
about eHomes focuses on the following topics: development of an appropriate model
for eHomes and handling of its transformations during the specification, configura-
tion, and deployment process of eHome systems; development of tool support for
the process; and the research on advanced model-driven development techniques for
creation of the eHome model and the tools supporting the above mentioned process
for eHome systems.

This thesis was developed within the framework of research activities of the
Integrated eBusiness Systems in Home Automation group (also known as the eHome
group) [RWT]. The eHome group is a part of the Department of Computer Science
3 at the RWTH Aachen University. Our department has a remarkable history in
the field of research on graph transformation theory and graph-rewriting systems.
In fact, the graph-rewriting system called PROGRES [Sch91] was developed in the
late eighties at our department. The work on this system contributes a great deal
to research on model-driven development. As the eHome group itself is active in the

1

2 CHAPTER 1. INTRODUCTION

home automation field, concentrating on eHomes, eHome services, their development
and deployment, we use the model-driven development techniques extensively in our
work. The research made by the eHome group has also contributed to the work
with numerous enabling technologies, such as component based service frameworks
(OSGi [CG01]), different communication protocols (X10 [X1004], UPnP [JW03]),
semantic webs and knowledge bases (OWL [BvHH+03]), to name but a few.

The term eHome, also known as smart home, denotes a living space, which
is equipped with different appliances. These appliances are computer controlled
devices, with features that can be combined in order to offer value added services
to the inhabitant of the eHome. These value added services, in other words eHome
services are related to the fields of comfort, security, or infotainment. eHome services
offer the inhabitant a greater value than just a set of electronic appliances present
in the living space.

The main emphasis of the work of the eHome research group lies in develop-
ing a specification, configuration and deployment process (SCD-process) for eHome
systems. This process is developed to introduce eHomes to the mass markets by
breaking an important price-barrier to enter the market. The SCD-process dissolves
the current expensive software development process for eHome systems, by replac-
ing it with a low-cost software configuration process for the systems. The eHome
systems and SCD-process are discussed in more detail in Chapter 3.

The basis for the SCD-process is the eHome model. This is a general meta-model
describing common aspects for all eHomes. The eHome model instance is derived
from the eHome model and describes the aspects of a particular eHome. The eHome
model instance provides the necessary details to specify and configure an eHome
system for the particular eHome. The eHome model instance is created and refined
during the SCD-process and contains all the information necessary to deploy the de-
sired eHome system into an ordinary home thus, transforming it into an eHome. The
first topic of this thesis deals with the eHome model structure and transformations
of the eHome model instance during the SCD-process (see sections 3.3 and 3.6).

The second topic of the thesis concentrates on tool support for the SCD-process.
The eHome group uses a graph based Fujaba tool suite [Zün99] in the software
development. Fujaba is a graph-rewriting system similar to PROGRES and can
be regarded as a successor to PROGRES, because the Fujaba project was initiated
in the late nineties by the people who developed PROGRES. But compared to
PROGRES, Fujaba relies on the latest UML [RJB99] modelling techniques and
produces by default a fully executable Java code generated from the UML models.
Fujaba is used in the scope of this thesis to specify fully operational eHome model
(see Chapter 3) for the eHomeConfigurator tool (see Chapter 4). The discussion
why it is Fujaba and not PROGRES that is used is given in sections 2.3 and 6.1.

eHomeConfigurator is a an application largely developed in the framework of
this master thesis, with an important role in all the phases of the SCD-process.
The phases of the SCD-process can be derived from its name: specification, config-
uration, and deployment. According to the phases, the eHomeConfigurator tool is
used to specify the eHome with its constructional ground plan, appliances, and the
already existing services. During the configuration phase, the tool configures the
eHome model instance according to the selected services, sub-services, correspond-
ing software components, and appliances. After the configuration phase resulting in

1.1. STRUCTURE OF THE WORK 3

a complete configuration, the eHome model instance is ready for deployment. The
complete configuration provides the services descriptions required by the eHomeCon-
figurator tool for deploying the corresponding software components onto the service
gateway in the eHome.

The implementation of the eHomeConfigurator tool comprises the visualisation
of eHome model instance’s structure. The model works with activity buttons and
menus for the models activities. There are also editors for different views on the
model instance and its contexts, wizards to guide the user stepwise through more
complex operations on the model. The development of the eHomeConfigurator tool
introduces the so called translator implementation problem handled in Chapter 2.
The translator problem lies in the implementation and maintenance overhead for
translators used to transform and synchronize the structures of the eHome model
instance with the structures needed for visualisation or on other technological plat-
forms.

The third topic of this thesis focuses on solving the translator problem. The
research on this problem includes the application of triple graph grammars [Sch94]
in software development to specify bidirectional translators to synchronise different
object models during runtime. This thesis develops a Fujaba-related generic trans-
lation and synchronisation framework called Transformation Rules for Incremental
Model Synchronization (TRIMoS) (see chapters 6 and 7). The framework enables
to replace the hand coded translators with visually specified rule sets.

The TRIMoS framework has currently shown a lot of potential for synchronisa-
tion of different object models. For example, the translator development problem1

tackled in this thesis can be solved in a more generic way using TRIMoS framework.
The future work on TRIMoS framework should have two main goals: firstly, the
development and refinement of TRIMoS into a well defined and documented Java
technology API; and secondly, implementation of the automatic activity invocation
mechanisms inside the framework to propagate only the method calls2 between the
synchronized models.

In summary, it can be said that this thesis focuses firstly on the development
of an appropriate model for eHomes and handling of its transformations during
the SCD-process. Secondly, the development of tool support for this process is
handled. And last but not least, the TRIMoS framework is developed to improve the
eHomeConfigurator development, which might be applicable in the object-oriented
software engineering in general.

1.1 Structure of the Work

The next chapter contains the motivation of this thesis, which describes two develop-
ment scenarios. The first one illustrates the current development and maintenance
process for the eHomeConfigurator tool and the second one describes the desired
outcome of this thesis. Chapter 3 gives an overview of the first topic of this thesis.

1The problem is illustrated by two development scenarios in Chapter 2. The first scenario
represents the currently used development steps for the tool in the framework of this master thesis
and the second one presents the desired outcome of this master thesis, solved with the TRIMoS
approach (see Chapter 6).

2The method calls are not related to the structures of the related models.

4 CHAPTER 1. INTRODUCTION

It introduces eHomes, eHome systems, the SCD-process, describes the technical so-
lution and the structure of the developed eHome model. The life cycle of the eHome
model instance is viewed from the perspective of the SCD-process.

Chapter 4 introduces the tool support for the SCD-process and the eHomeCon-
figurator project in general. The development of the eHomeConfigurator tool is
discussed in more detail in the sections where the modules implemented in the scope
of this thesis are handled. The discussion raises the development problem of trans-
lators in the eHomeConfigurator tool. The solution approach for this problem will
be handled in the following chapters.

Firstly, the theoretical background for the solution approach is introduced in
Chapter 5. The theoretical background covers the graphs, graph transformations,
graph grammars and triple graph grammars (TGG). The TRIMoS approach solv-
ing the translator problem is based on triple graph grammars and is introduced in
Chapter 6. TRIMoS is a synchronisation framework, which helps to replace the
hand coded translators in eHomeConfigurator with translators specified by means
of visual rules. Chapter 6 deals with the TRIMoS transformation rules and their
differences from the classical TGG approach, but also the semantics of the rules.
Chapter 7 focuses on the implementation of the TRIMoS framework and synchro-
nisation mechanisms. This chapter discusses in detail the design of the framework,
the object structures created during the runtime of the framework and the imple-
mentation of the interpretation of different TRIMoSrule object stereotypes. The
adaptations of the JGraph API to be used with the TRIMoS framework are tackled
upon in the same chapter.

The next chapters give an overview of the future work in Chapter 8 and related
work in Chapter 9. Chapter 10 summarises the main findings of the research and
implementation of the trimos approach. The thesis is finalized with appendix A
containing an example TRIMoS rule set for environment editor of the eHomeCon-
figurator tool, a list of figures, bibliography and an index.

Chapter 2

Motivation

The motivation for this thesis is primarily to solve the current development prob-
lem of frequent eHome model changes. Every model change involves quite a severe
and error-prone coding overhead to adapt the eHomeConfigurator for those changes.
This thesis describes the eHome model and runtime transformations of the eHome
model instance (see Section 3.3) in the eHomeConfigurator tool during the SCD-
process. The execution of the SCD-process created the interest in developing the
eHomeConfigurator. Another interesting aspect of the thesis for us is to explore
new Fujaba-related possibilities, because this tool is an outstanding example sup-
porting the model-driven development practices and is most extensively used when
developing the eHomeConfigurator.

The Fujaba tool suite is used because the eHomeConfigurator project originates
from a lab course [Nor03], where Fujaba as a tool was studied and the initial form of
the eHome model and eHomeConfigurator was developed. It was a logical choice to
continue using the Fujaba tool since the author of this thesis was one of the students
participating in the lab course and it would be an enormous overhead to develop the
project from scratch using a different selection of development tools.

During the eHomeConfigurator project, the underlying eHome model has been
redesigned about eight times. Additionally, numerous minor adjustments have been
made to the model structure in the course of the project. Every major design
decision involves nearly all structural changes, which can be made in the UML
model in general: adding, removing classes; adding, changing, removing relations;
adding, changing, removing class attributes, and methods – see Figure 2.1. All these
changes require manual programming to adapt the eHomeConfigurator tool for the
changes made. To emphasize the primary goal of this thesis, which is to research
more generic ways for the eHomeConfigurator development and to illustrate the
problems related to the goal, there are two development scenarios presented in the
next section.

2.1 Example Scenarios

The objective of the eHomeConfigurator development is to enable working with the
eHome model and to create the surroundings which encapsulate the whole life cycle
of the eHome model instance (see Chapter 4). The eHome model instance is trans-

5

6 CHAPTER 2. MOTIVATION

Figure 2.1: The possible changes in the eHome model

formed and refined during its life-cycle according to the specific eHome environment
and requirements of the inhabitants of the specific eHome. All changes to the model
instance structure during the SCD-process are performed using the eHomeConfig-
urator tool. The next two sub-sections present two alternative eHome configurator
development scenarios.

Both scenarios have one common step, which consists of the creation of the
eHome model using Fujaba (see Chapter 3). Fujaba allows us to describe the eHome
model’s static and dynamic structure by means of UML diagrams. After the model
is designed, the corresponding Java code is generated with Fujaba. The eHome-
Configurator is developed to encapsulate the code generated for the eHome model,
which is the inner data structure for the eHomeConfigurator tool. This tool enables
working with the eHome model instance serving as the user interface of the eHome
model instance.

2.1.1 First development scenario for eHomeConfigurator

In the first case, the graphical user interface (GUI) of the eHomeConfigurator (see
Figure 2.2) has to be developed manually. The tool development starts with pro-
gramming the main frame with different menus and general tool bar buttons, also
relating the menus and buttons with the activities of the eHome model. Every con-
text (see Section 3.5) of the eHome model requires an editor panel programmed
to work with the context concerned, and every editor requires activity buttons for
the activities of the eHome model1 corresponding to the context view reflected in

1Activity is a synonym for a method in object oriented model, i.e. activities are the methods
defined in classes of the eHome model.

2.1. EXAMPLE SCENARIOS 7

the editor. These buttons have to be placed and set to call the activities in the
appropriate model context. For the input parameters of every activity, the input
forms have to be programmed. In addition, the visualisation of the editor has to
be implemented. In the case of visual editors, the translators visualizing the graph
structure of the eHome model instance have to be programmed. These translators
create the corresponding visualizing JGraph [Com] structures on the editor panel
surface.

menus

tool bar

acitivity form

visual editor
(JGraph)

activity buttons

Figure 2.2: The environment editor of the eHomeConfigurator tool.

We consider as a simple illustrative example, a model change which states that
locations can have sub-locations. A sub-location models a part of a larger location.
For instance, a living-room can have a window area as its sub-location for advanced
illumination control in the eHome. This change is quite trivial and is done in the
environment context of the eHome model (see Figure 2.3). In the eHome model’s
UML class diagram, the Location class has to be provided with a self-relation on this
class like in Figure 2.3. This is done with Fujaba. The self-relation has to be enabled
through an activity in the model dynamics. Activities are specified by Fujaba story
diagrams. There is a story diagram specified for the Location class (see Figure 2.4),
which defines the method createLocation(String name) generated later into the
Java code. The Java code is generated with Fujaba, as well. These development
steps complement the model with sub-location concept and dynamics necessary to
create the sub-locations.

The structure of the model has changed in the environment context, which cor-
responds to the building structure of the eHome. The environment editor of the
eHomeConfigurator tool (see Figure 2.2) has to be adapted correspondingly. To vi-
sualize this structural change, the translator that translates the environment context

8 CHAPTER 2. MOTIVATION

0..n

1..n

contains

0..n

0..n

contains

0..n1

contains

collapsed

collapsed

EnvironmentElement

collapsed

Environment

collapsed

collapsed

Device

LocationElement

collapsed

Location

0..1

0..1

0..n

1..n

contains

0..n

0..n

contains

0..n1

contains

collapsed

collapsed

EnvironmentElement

collapsed

Environment

collapsed

collapsed

Device

LocationElement

sub-location
collapsed

Location

Figure 2.3: The environment context of the eHome model without (on the left)
and with the sub-location concept (on the right).

]success[]failure[

newLocation null

«create»
contains

contains this

«create»

this.getPosY()+5:=posY
this.getPosX()+5:=posX
name:=name

Location:newLocation

name==name

Location:otherLocation

Location::createLocation (name: String): EnvironmentElement

Create a sublocation
for this location.

Figure 2.4: The activity for creating sub-location

of the model instance into the JGraph structures, has to be adapted to consider the
new self-relation on the Location class.

In a situation, where Room A has the Door Area as its sub-location and the
Door Area is important for the security service as an area under surveillance, the

2.1. EXAMPLE SCENARIOS 9

translator of the environment editor has to be re-programmed to visualize this sit-
uation on the JGraph panel of the editor. The adaptation of the translator is done
manually. Manual programming is performed by providing the editor with a button
and an input form for the new activity createLocation(String name) described
in Figure 2.2. These steps finalize the change request for adding a sub-location
concept into the eHome model.

2.1.2 Improved development scenario for eHomeConfigurator

Similarly, in the second case: after the eHome model has been developed, also the
eHomeConfigurator has to be developed. However, in this case, the sub-location
concept is needed to be introduced into the model with no manual programming.
The whole user-interface with its different API technologies is initialised by a set of
visual initialization rules resembling UML object diagrams. The runtime behaviour
such as invocation of activities on the model instance and the visualization of model
instance’s graph-like structure, is also described by the set of visual rules. The
visual rules are comprehensive and express the same object structure as described
in Fujaba for the eHome model. Currently, nearly all this can be done using the
generic activity invocation mechanism [NSSK05] (see Section 4.3.2), which instead
of visual rules involves XML configuration files, and secondly, with the TRIMoS
framework, which uses visual rules (see chapters 6 and 7). Both tools are extended
or developed largely in the framework of this thesis.

The modifications on the eHomeConfigurator to adapt it to the illustrative new
sub-location concept have only two simple steps. First, a TRIMoS rule set for the
environment editor has to be complemented with one new rule describing the self-
relation on the Location class (see Figure 2.5). The second step enables the button
for the method creating a new sub-location. This is done by changing the XML
configuration of the generic activity invocation mechanism. The example is given in
Listing 2.1.

1 <ACTIVITY name="createLocation" label="New SubLocation">
2 <TOOLTIP >
3 Creates a new sub -location connected to the location.
4 </TOOLTIP >
5 <CONTEXTS >
6 <ENVIRONMENT/>
7 </CONTEXTS >
8 <PARAM label="Name">
9 <TOOLTIP >The name of the new sub -location.</TOOLTIP >

10 </PARAM>
11 </ACTIVITY >

Listing 2.1: The XML configuration for a new method createLocation(String
name).

10 CHAPTER 2. MOTIVATION

l2 : Location

<<create>>

name = newName

userObject = newName

l1.subLocations
<<create>>

d1.ports
<<create>>

e.source
<<create>>

e.target
<<create>>

d2 : DefaultGraphCell

<<create>> d2.ports
<<create>>

d1 : DefaultGraphCelll1 : Location

p1 : DefaultPort

<<create>>

e : DefaultEdge

<<create>>

p2 : DefaultPort

<<create>>

eHome model JGraph model

Figure 2.5: The TRIMoS rule to create a sub-location and corresponding JGraph
structures. The rules follow the UML object diagram notion. The postcondition
rule elements are denoted with stereotype create.

2.2 Motivation Conclusion

Considering these two development scenarios, it is obvious that in the first case, every
change in the eHome model results in a considerable coding overhead. Procedures
described in the second development scenario, on the other hand, are more desirable
and easier to perform, especially from the perspective of software maintenance. This
can be concluded from the following facts:

1. In the first case, the development and adaptations in the eHomeConfigurator
have to be made by reading, refactoring and reprogramming the tools code.
This means changing the code of the visual editor translators, the code for ac-
tivity buttons, their input forms, and eHomeConfigurator menus. This process
is error-prone, requires extensive debugging and testing.

2. In the second case, there are XML configuration and visual rule sets to be
specified and maintained. Although the XML configuration is also changed by
hand, it requires considerably smaller effort. The visual rules are comprehen-
sible – easy to understand and to write down.

2.3. SOLUTION SKETCH 11

3. As to maintenance, it is easier to find and change visual rules than analyse the
translator code and search for the code segments where the changes have to
be made.

4. The hand-coded translators are not bidirectional. Since the TRIMoS frame-
work is based on triple graph grammars (see Chapter 5), it works as bidirec-
tional transformation framework.

5. The visual rules can also be changed during runtime of the tool in testing,
because the TRIMoS framework has interpretative nature.

So far, the development of the TRIMoS system has shown a lot of potential
for the future work. This thesis tackles the problem of frequent structural changes
of the eHome model in the case of eHomeConfigurator maintenance as described
in the development scenarios. The future work on the TRIMoS implementation
may also concern the automatic activity invocation. The TRIMoS system could be
changed in the way that the visual rules would have the expression power to relate
method calls on different models to carry out related computations, which have no
effect on the graph-like structure of the models2. Considering this development,
the given generic activity invocation mechanism will be redundant. TRIMoS can
also be extended and refined by further development to a production-level Java API
having simpler interface and the defined procedures to operate it with. These further
developments are beyond the scope of this thesis.

2.3 Solution Sketch

As indicated, there is a most urgent problem in the maintenance of the translator
code which transform the eHome model structures to the JGraph structures. The
solution for the translator problem is quite elegant. The structures of the eHome
model and JGraph model have to be linked to follow the structural changes of one
another reactively and automatically. This is done using the triple graph grammar
based TRIMoS approach (see Chapter 6). A graph grammar itself defines a set
of production rules on graphs, i.e. graph rewriting rules. The set of the graph
rewriting rules defines a graph language – a finite or infinite set of graphs, which can
be produced/ constructed according to the grammar of this language (see Chapter 5).

The idea of triple graph grammars is to bind two different graph grammars with
the third graph grammar. We call these two graph grammars left- and right-hand
side grammar. The connection of the left- and right-hand side grammars is done per
graph rewriting rule on both sides via a third graph rewriting rule in between. In
case a rewriting rule is executed on either of the left- or right-hand side graph, the
third graph in between triggers the related graph rewriting rule on the other side.

The content of this thesis is to extend and develop the TRIMoS system, which
was initially developed at the University of Kassel, Department of Computer Science
and Electrical Engineering by the Research Group Software Engineering as a proof of
concept for simple form of an interpreter for triple graph grammar rules. Before the
beginning of the work on this thesis, the TRIMoS system was able to produce simple

2For example, statistical computations

12 CHAPTER 2. MOTIVATION

tree-like structures related to each other. It was not able to delete the elements
from the structures produced or keep them in sync in the perspective of deletion or
more complex graph structures. The reasoning behind the usage and development of
TRIMoS and not using the PROGRES system developed in our chair is the following:
the eHomeConfigurator uses the Java programming language specific visualisation
technologies not supported and enabled by PROGRES. We have situations where the
visual actions on user interface imply the eHome model instance’s structural changes
beneath the user interface. For example, if device D on the eHomeConfigurator
display is moved from room A to room B, the link between the corresponding Device
object D and Location object A has to be destroyed in the structure of the eHome
model instance and created between the Device object D and Location object B.

The usage of the TRIMoS system implies that instead of the hand-coded trans-
lators, there will be one set of TRIMoS rules for every visual editor. These rules
are edited with a simple TRIMoS editor which visualises one graph rewriting rule
from the left-and right-hand side graph grammar (see Figure 2.5) and enables the
developer to create, examine, or manipulate these two rule sides. The third graph
grammar rule in between is hidden and handled automatically by the TRIMoS sys-
tem during runtime.

If the change occurs in the eHome model, only the set of rules belonging to the
visual editor addressing the context of the eHome model where the change occurred
has to be changed. In the second illustrative development scenario, where a sub-
location concept was introduced, there has to be a new rule (the rule is shown on
Figure 2.5) added to the rule set defining the environment editor of the eHomeCon-
figurator tool (see Figure 2.2). This kind of an approach has smaller development
overhead, is more comprehensive, and less error-prone.

2.4 Summary

This chapter gave an overview of the motivations behind this thesis. We introduced
an eHomeConfigurator development related problem, as well as two development
scenarios, where the second scenario is the desired outcome of this thesis and presents
development techniques with minimal coding overhead. In the next chapters, we will
give an overview of the SCD-process, the eHome model and the eHomeConfigurator
development. We will also introduce the theory behind the TRIMoS solution and
the approach itself.

Chapter 3

The eHome Model and the
SCD-process

The eHome Group located at RWTH Aachen University, Department of Computer
Science 3 is active in the research field dealing with home automation, smart homes
also known as eHomes. The eHomes are living spaces equipped with computer
controlled electronic appliances and services combining the functionalities of those
appliances. These services offer the inhabitant an additional value which is greater
than just a plain set of devices and the sum of their functionalities. The term eHome
system denotes a computer system the presence of which at home transforms it into
an eHome. The eHome system consists of all the hardware and software required to
provide eHome services in the home environment.

3.1 The eHome System

Figure 3.1 illustrates the structure of the eHome system. The eHome system com-
prises all the hardware, software and supporting systems for providing the smart
home environment with its services for the inhabitants (multiple users). For ex-
ample, eHome services may cover the fields of security, comfort or infotainment.
According to Figure 3.1, an eHome system has three levels:

1. the hardware level contains appliances such as cameras, sensors for movement
or temperature, lamps, heater systems, media devices, the local and remote
communication devices to interface the inhabitant with the eHome system
(computers, PDAs, mobile phones, etc.), but also the residential gateway hous-
ing the service gateway and eHome service software.

2. the software level includes the eHome service software, the service gateway as
the service middleware for eHome services running on the residential gateway,
the client software running on the communication and interface devices.

3. the supporting systems deal with services provided by the service providers to
support the eHome with additional features, information, for example weather
or traffic information, news, digital media, etc.

13

14 CHAPTER 3. THE EHOME MODEL AND THE SCD-PROCESS

Distributed IP-based Service Platform

P
ro

v
id

e
r

(r
e
m

o
te

)

Digital Content

Applications

Services

IP-based Service Platform

Residential Gateway (HW)

Service Gateway (SW)Multi-User

In
te

rfa
ce

 D
ev

ic
es

(lo
ca

l/r
em

ot
e)

Infotainment

Open-Closed-
Sensor

Open

Close

Photo Sensor
Ammeter

Thermo-
meter

Heater

Rollerblind
Lamp

C
o
n

su
m

p
ti

o
n

Motion Detector

Camera
Siren

Motion Detector

Camera Lamp
USB

X10

S
e
cu

ri
ty

Figure 3.1: The structure of the eHome system

The eHome research group deals with the eHome system related problems, espe-
cially the development and architecture of these systems but also with the related
business processes. One of the key problems up to now is how to introduce eHomes
to the masses. The research on this problem is embodied into the work on the Spec-
ification, Configuration and Deployment process (SCD-process) for eHome systems.
This thesis contributes to the research on the SCD-process, dealing more specifically
with the tool support for this process and with the design and SCD-process related
transformations of the underlying eHome model.

The next sections of this chapter and the next chapters cover the SCD-process
and its enabling factors like the eHome model (see Section 3.3) and tool support (see
Chapter 4). In this chapter, we will first introduce the SCD-process. Secondly, we
will focus on the eHome model, its technological solution, structure, and finally we
will deal with the transformations of the model instance during its life cycle in the
SCD-process. The tool support for the SCD-process will be addressed in Chapter 4.

3.2 The SCD-process for eHome Systems

The reason for developing the Specification, Configuration and Deployment process
(SCD-process) for eHome Systems is to establish a low cost process to introduce
eHomes to the mass-market. The main obstacle preventing eHomes from becoming

3.2. THE SCD-PROCESS FOR EHOME SYSTEMS 15

common in the welfare society is the relatively high price of the software driving
the eHome since it needs to be developed or adapted for every particular eHome.
Despite the fact that the appliances used in smart homes are getting constantly
cheaper, very little research has been done on the subject of eHomes, except for a
few enthusiastic development projects [inH05, T-C05]. The main reason for this is
the large amount of coding work needed to complete this kind of project.

The idea of the SCD-process is to establish an iterative chain of procedural
techniques to automate the creation of the eHome as much as possible. This means
that we are looking for ways to automate and support the process of specifying,
configuring and deploying an eHome system into the normal home - transforming
the regular home into an eHome. This is achieved by means of tool support, reuse
and mere configuration of software components for providing eHome services. It is
essential that the shift from the normal home to an eHome did not involve developing
the software but merely configuring and deploying it. Furthermore, the configuration
and deployment of the given components must also be done automatically. As the
result, the specification of the home environment, selection of the desired eHome
services and installation of necessary appliances are the only activities performed
manually.

As the name of the SCD-process indicates, the process consists of the following
phases:

1. Specification of the eHome environment and necessary services. During this
phase, the architectural information about the eHome is captured – how the
rooms in the home are located and connected with the different location el-
ements such as doors and windows. The given appliances and their location
in the home environment is described – in which rooms or on which location
elements the devices are positioned. The already existing eHome services are
also identified – when modifying the configuration of the eHome, the already
existing eHome services have to be specified. Whenever new eHome services
are needed, they are selected and added to the specification. Only top-level
services are selected.

Along with the eHome environment, the services used later in the eHome
environment, plus the required devices and functionalities need to be defined
and specified beforehand, as well. For more information about the specification
phase see sections 3.6.2.

2. Automatic configuration of the selected services. The services selected in the
specification phase are automatically configured. This means that the neces-
sary devices still missing from home are added to the configuration. Likewise,
the required sub-services that are missing are selected to meet the functional
requirements of the selected services. For example, if the lighting service needs
at least one lamp per room and one switch to control the lamp, these devices
are added to the configuration. Furthermore, the corresponding driver compo-
nent services for the lamp and switch controllers are added to the configuration.
For more information about the configuration phase, see Section 3.6.3.

3. Deployment of the service configuration onto the service gateway in the eHome.
The software components specified and configured during the first two phases

16 CHAPTER 3. THE EHOME MODEL AND THE SCD-PROCESS

are deployed automatically onto the service gateway residing in the eHome.
The software components are also initialized properly and launched automat-
ically. For more information about the deployment phase, see Section 3.6.2.

3.3 The eHome Model

The whole SCD-process is strongly related to the eHome model. The eHome model
is a meta model describing real eHomes, depicting aspects relevant for the SCD-
process, eHome systems and the runtime of these systems. In other words, the eHome
model is a general model defining a language to express the specific eHomes. This
model contains the information required to model the specific home environment,
appliances, services, etc. The model describing one particular eHome is called the
eHome model instance.

We chose this notion to call the general model the eHome model and the specific
model derived from it the eHome model instance, since the eHome model is an object-
oriented model consisting of classes, their relations and the dynamics of the classes.
The eHome model instance, on the other hand, is an object model constructed
and maintained for one particular eHome during the runtime of tools supporting
the SCD-process and runtime of the eHome system (for more information about
tool support, see Section 4.1). We use the object-oriented terminology by calling
the object model derived from the eHome model class structures the eHome model
instance since this is literally a structure of the objects, i.e. the instances of the
classes. The instance of the eHome model represents one particular eHome with all
its specific details and configuration and is the basis for the SCD-process.

The model instance is actively involved during the runtime of the eHome system
as it provides information about the home environment for eHome services. This
enables the development of context aware eHome services which need the real-time
information about the inhabitant locality, and the states of other services, or appli-
ances. In other words, the eHome model instance is also a communication medium
for eHome services.

The author of this thesis has been the main contributor to the eHome model
development and its embedding into the SCD-process in the past two years, as well
as a senior developer of the tools supporting the work with the eHome model instance
and the SCD-process. The next sections give an overview of the development of the
eHome model, its contents and its function in the SCD-process. The tool support
for the process is handled in Chapter 4.

3.4 Technical Solution for the eHome Model

The eHome model is developed using the Fujaba tool suite [Zün99]. The Fujaba tool
suite enables the development of an object-oriented model and the generation of a
fully executable Java code for the model. The model has its statics and dynamics.
The static structure of the model is designed using a UML class diagram describing
the classes of the model and their relations to each other. During the runtime,
the objects of the model classes are created according to the structure of the class
diagram.

3.5. CONTENTS OF THE EHOME MODEL 17

There have been several other versions of the eHome model before the current
one. The first model was designed using the ontology web language (OWL) and the
tools supporting the SCD-process were therefore developed using knowledge base
specific technologies [KNS04]. The reason why there was a change in technology to
use object-oriented models and the Fujaba tool instead, was to enable a bigger variety
of choices for development of the SCD-process supporting tools. The object-oriented
model is easier to operate with during the tool support software development and
has proven to be the right technological choice.

The dynamics or runtime behaviour of the eHome model is described by means
of Fujaba story diagrams [FNTZ98]. The Fujaba story diagrams are a combination
of the UML activity diagrams and UML collaboration diagrams. The story diagrams
can be considered as activity diagrams having their own activity type called story-
activity which enables describing the interaction of objects during the operational
sequence of the program or the time-flow of the program execution. In terms of
methods of the classes it means that every method in the class is described by a
story diagram. The story diagrams enable the full expression power of the Java
programming language.

By describing the eHome model using UML diagrams, no manual coding is
needed. After designing the model in Fujaba, the model’s Java code is generated
with the same tool. The code is compilable and error free from the human error
perspective. The only problems appearing in code are due to incorrect modelling of
the classes or their methods.

The structure of the eHome model is quite complex. It includes six different
contexts starting with the building structure of the eHome and ending with the
environment information for services during runtime. The next section will introduce
each of the six contexts together with their static structure. The complete model
will not be visualized as one unit due to its complexity.

3.5 Contents of the eHome Model

The eHome model has six different contexts. These contexts provide all the infor-
mation needed to support the SCD-process and the runtime of the eHome system.
The contexts are the following:

1. The functionality context. This context covers the functionalities of the eHome
services, as well as the appliances. See Section 3.5.1.

2. The device definition context. This context describes the devices and their
properties. See Section 3.5.2

3. The environment context. This context includes information about the build-
ing structure of the eHome, the given appliances and eHome services. See
Section 3.5.3.

4. The service context. This context represents the services, their functional
requirements and presence in the eHome. See Section 3.5.4

5. The service instance context. The context expresses the runtime configuration
of services. See Section 3.5.5

18 CHAPTER 3. THE EHOME MODEL AND THE SCD-PROCESS

6. The inhabitant context. This is a slice of the model which contains information
about the inhabitant in the eHome. See Section 3.5.6.

3.5.1 Functionality Context

The smallest but one of the most important contexts of the eHome model is the part
describing functionalities of the services, as well as the appliances (see Figure 3.2).
The functionalities are described by means of Function class which has a self-relation
describing that one functionality can be refined by another one. For example, a
detection functionality can be refined by the functionalities: movement detection,
smoke detection, glass breakage detection, etc. (see example in Section 3.6.2).

0..n

refines
0..1

collapsed

String : name

Function

Figure 3.2: The functionalities context of the eHome model

The self-relation of the Function class results in the tree structure of objects from
this class. Functions are defined by their names and the refinement relation of the
functionalities should be used in such a way that the most general functionality is the
root of the tree and the leaves are the most specific functionalities (see Figure 3.10
in Section 3.6.2).

3.5.2 Device Definition Context

The devices used in the environment specification phase of the SCD-process are pre-
defined. In the case of a device, or several devices of the same type specified in the
eHome environment (see Section 3.5.3), there must be a device definition describing
the device, including the manufacturer information, the name, and attributes. This
device is specified in the environment as an instance of the device definition with a
specific hardware address (IP address, house code for X10, USB address, etc.) and
recognizable name. In figure 3.3, the device definition is represented by DeviceDe-
finition class. The device as the instance of its definition is represented by the
Device class and the attributes by the Attribute class.

In earlier versions of the eHome model the devices were regarded as the aggre-
gate of functionalities. This was needed for meeting the requirements for eHome
services. Although the essential part of the devices is still described by means of
functionalities, it is done by using the software component (see Section 3.5.4). This
is because the hardware itself and the physical connections have no significant role
in the software configuration step during the SCD-process since in the case of the
higher level software and user interfaces, the hardware is visible only through hard-
ware driver components, their attributes and access methods. The communication
between appliances is also performed over lower level drivers and communication pro-

3.5. CONTENTS OF THE EHOME MODEL 19

0..n

0..1

0..n

1

is instanciated as

0..n 0..1

has

has

collapsed

Integer : numberOfVirtualDevices
String : name

String : manufacturer

DeviceDefinition

String : value
String : name

Attribute

collapsed

String : name
Boolean : existing
String : address

Device

Figure 3.3: The device definition context of the eHome model

tocols, so physical connections are not relevant for the SCD-process (see sections 3.2
and 3.6.3).

3.5.3 Environment Context

The environment context of the eHome models the location information according to
the ground plan of the home, the given appliances and the given eHome services. The
environment context can provide a set of different environments which are connected
via locations or location elements for the eHome. For example, the house can be
connected with an external garage, by a hall, or just a door. Since there is also a
sub-location concept implemented, it means that, for example, a floor can have its
rooms as sub-locations or the room can have different service-related areas near the
windows, doors or a TV set. This kind of modelling freedom and generality gives
us a mechanism powerful enough to express any kind of architectural designs. We
mostly concentrate on floor plans, but we can also express 3D designs using the
connective and descriptive location elements.

The environment context has the EnvironmentElement class as a super-class for
any other class describing location information of the home (see Figure 3.4). Envi-
ronmentElement aggregates the common features of the classes describing the home
environment. Since the classes Environment, Location, and LocationElement in-
herit from the EnvironmentElement class, they have a relation to the Device class.
This means that every element in the environment context can have appliances re-
lated to them. For example, in the living room, there can be a lamp, a media set
with speakers and a LCD screen, controlling switches, etc.; the door in the room can
have a movement detector attached to it; and the window can have a class-brake
detector attached to it.

The (see Figure 3.4) Environment class depicts the environment which is a logical
independent entity of the living space with its locations, appliances and eHome
services, a typical eHome. The Location class corresponds to one logical location

20 CHAPTER 3. THE EHOME MODEL AND THE SCD-PROCESS

entity in the eHome environment, for example, a floor, a room or a part of the
room. Locations are important for services because the location is a smallest unit
covered by a service according to our service selection strategies (see sections 3.5.4
and 3.6.2).

The Location class has a self-relation sub-location for the sub-location con-
cept. This relation defines a hierarchical location graph expressing logical substruc-
tures in the locations themselves. This graph must be a directed acyclic graph
(DAG). It makes no sense to have a transitive cycle, where one location is simulta-
neously a parent and a sub-location of another location. For example, the first floor
contains a living room as a sub-location and the living room has a window area as
its sub-location. Whereas, if the window area has the first floor as its sub-location,
the first floor would also be the sub-location of the living room which in turn is
a sub-location of the first floor. This would be a contradiction in the sub-location
concept we have.

0..n

0..n

0..n

1..n

contains

0..n

0..n

contains

0..n1

contains

collapsed

Environment

collapsed

String : name

EnvironmentElement

collapsed

collapsed

Device

LocationElement

sub-location

collapsed

Location

Figure 3.4: The environment context of the eHome model

The LocationElement class describes one logical component of a location - win-
dows, doors, or why not an elevator shaft. The LocationElement objects like doors
can be shared between locations so that logical connections appear. Thus, environ-
ments, locations, and connecting location elements can form a complex graph that
represents the logical connections1 in an architectural design. An example of the
environment is depicted in Figure 3.9.

3.5.4 Service Context

The service context of the eHome model represents eHome service descriptions, or
more accurately, the definitions of eHome services. It is crucial for the SCD-process
that the eHome service software components configured during the automatic con-
figuration phase are modelled beforehand since the automatic configuration relies

1The connections describe the relations between the entities in the architectural design thus,
modelling also the three dimensional relations in the building.

3.5. CONTENTS OF THE EHOME MODEL 21

on the abstract description of the eHome service software. The Service context does
not include the runtime configuration of the selected services, which has to be de-
ployed onto the service gateway in the eHome during the deployment phase of the
SCD-process.

Figure 3.5 outlines the service context of the model. The service itself is modelled
by the Service class which contains information such as the id, name, type, and
description of the service, but also the information on the resource URI of the
corresponding software component installed during deployment phase of the SCD-
process. The Service class is an abstract description of the corresponding software
component executed during the runtime of the eHome system.

0..n0..1

provides

0..1

0..n

refines

0..n

0..n

0..n0..n

hasActive

0..n

0..1

0..n 0..n

controls

0..n

0..1

hasGlobal

0..n

0..1

contains

0..n0..1

optionally requires

0..1

0..n

correspondingFunction

collapsed

collapsed

Function

0..n0..1

requires

collapsed

collapsed

DeviceDefinition

collapsed

Environment

collapsed

collapsed

EnvironmentElement

0 = Integer : cardinality

ServiceFunctionCardinality

collapsed

String : type
String : name

String : id
String : description

String : componentURL

Service

has

collapsed

Attribute

offers

Figure 3.5: The service context of the eHome model

The essential part of the service description is specified by functionalities. The
Service class has three indirect relations to the Function class over the Service-
FunctionCardinality class. The service is described by the functionalities it pro-
vides, requires, and optionally requires. As mentioned in Section 3.5.2, the func-
tionalities of the devices are considered to be a part of driver services. Service-
FunctionCardinality class is used since the configuration step of the SCD-process
requires cardinalities on the functional requirements of the service (for more infor-
mation and examples see sections 3.2 and 3.6.3).

The functionalities give the SCD-process a dynamic composition and dependency
resolution during the automatic configuration step forming a certain abstraction
layer for service composition. The services may require functionalities in order to
combine them and offer this combination or to be able to provide additional func-
tionalities.

22 CHAPTER 3. THE EHOME MODEL AND THE SCD-PROCESS

The Service class has two relations to the Attribute class. These two relations
model the global attributes of the class – general information for the service, not
dependent on a specific eHome; and specific attributes – attributes which are set for
the runtime instance of the service (see Section 3.5.5).

Services are related to the environment information. The relation between En-
vironmentElement and Service class implies that the corresponding environment
element offers this service for the eHome inhabitants. This relation is typically used
for locations. It means that the most straight-forward strategy2 is to define in which
rooms the specific services are provided for inhabitants. The links between locations
and the service are created when the service is selected during the specification phase
of the SCD-process. An example of this is provided in Figure 3.15, where the Music
Follows Person service is available in the location Living-room.

Services also have a relation to the Environment class which indicates whether
the selected service for the home is configured during the automatic configuration
step or not. It is also stated whether the environment hasActive services and not
active services. Not active services can be configured and started later according to
the home-owner’s needs.

The Service and DeviceDefinition class are related, as well, as the devices
are controlled by the software. This is the case for services which in fact are driver
components of the devices. The device driver component provides the other services
or the end-user with functionalities attributive to the controlled device. This rea-
soning concludes with the fact that devices as such have no great significance for the
automatic configuration phase of the SCD-process. An example of a device driver
service is presented in Figure 3.12 or 3.18.

3.5.5 Service Instance Context

In the service context, the service is modelled by its functional dependencies. The
model instance context models the runtime configuration of eHome services in the
eHome system. During the configuration step of the SCD-process, the structures of
the eHome model instance corresponding to this context are filled automatically (see
Section 3.6.3). The service instance context models the service configuration during
runtime of the eHome system. To give a better overview, the context is visualized
on two figures 3.6 and 3.7.

According to Figure 3.6 the ServiceObject class models the service instance and
has a relation to the Service class indicating which service is instantiated as the
service object. The idea of the service instantiation is to assign a ServiceObject
with its specific configuration to every EnvironmentElement which provides the
selected Service. Thus, Figure 3.7 shows a relation between the ServiceObject and
the EnvironmentElement class. This relation is in corresponds to the relation
offers in Figure 3.5.

Similarly, the controls relation between the ServiceObject and Device classes
(see Figure 3.7) corresponds to the controls relation between the Service and
DeviceDefinition classes (see Figure 3.5). The controls relation described in the
service instance context models the situation where a service instance can control

2The strategy used by our eHome research group.

3.5. CONTENTS OF THE EHOME MODEL 23

is instanciated as uses

0..n

0..n

0..n

1

collapsed

ServiceObject

collapsed

collapsed

Service

Figure 3.6: The relation between service and service instance of the eHome model

0..n

uses

1

is in

0..1

0..n

0..n

0..n

1

0..n

0..n

0..1

has

collapsed

String : name

EnvironmentElement

0..n

0..n

0..n 0..n

0..n

collapsed

ServiceObject

has runtime component
has

has

controls

Boolean :) (init
Boolean :)ServiceObject:so (execute

EhService

«interface»

collapsed

collapsed

Device

collapsed

Attribute

String : value
String : name

State

contains

Figure 3.7: The service instance context of the eHome model

specific devices, using its specific configuration. This relation does not reflect the
general relation between the device driver service component and the device type it
controls.

The service instance can have states described by the State class. The states
describe runtime attributes of the service, which can be changed during runtime.
For example, in the case of the device driver service component, the state can also
describe a state of the controlled device – on/off.

The number and types of the attributes of the service instance itself are described
by the service it instantiates. The values are set separately for each service object.
For example, by the e-mail notification service the attribute e-mail address is de-

24 CHAPTER 3. THE EHOME MODEL AND THE SCD-PROCESS

scribed with arbitrary default value. In the case of the instance of this service, the
e-mail address has to be provided during the configuration step of the SCD-process.

The service instance object in the model has also a reference to its implementing
software component. This is realized via the relation has runtime component with
the EhService interface. It means that every software component implementing
an eHome service modelled in the eHome model instance also has to implement
this interface. This relation enables the model to be aware of the implementing
software components and also to call methods upon them according to the EhService
interface (more information about this in Section 3.6.5).

But the most important relation in the service instance context for the configu-
ration step in the SCD-process is the self-relation uses of the ServiceObject class.
This relation expresses the usage relation between the services during runtime. In
the service context, there is no explicit relation between the services. The reason for
that is to use the functional abstraction layer3 around the services for the service
composition to enable straightforward automatic configuration of the services during
the SCD-process.

As mentioned before, the service instance context is filled with objects and data
during the configuration step of the SCD-process. The tools supporting the auto-
matic configuration (see Chapter 4) take into account the selected services, their
functional requirements, and then compose a suitable set of services to enable the
selected services in eHome. The suitable set is composed as the structure of the ser-
vice instances where the usage relations between the services are expressed explicitly.
The composition uses the indirect provides, requires, and optionally requires
relations between the Service class and the Function class (see Figure 3.5). These
relations are used to construct a usage and dependency graph of the service in-
stances, expressing the runtime structure and configuration of the eHome services in
the eHome system. For more information about the configuration step and eHome
model see Section 3.6.3.

3.5.6 Inhabitant Context

The inhabitant context models the person-related information in eHomes. The per-
son related information is irrelevant for the SCD-process, because the process in-
volves the specification, configuration and deployment of eHome systems in general.
The emphasis of the process lies on the resource and dependency resolution. Nev-
ertheless, information about the person plays an essential role during the runtime
of the eHome system, for example, when communicating information about the in-
habitant’s location to the services. Person related information is also important for
other eHome processes like business processes [Kir05] and possible transportation
of services between different eHome environments4. For those reasons the person
related information is modelled in the eHome model.

Figure 3.8 presents the super class Person of the classes Inhabitant and Cus-
tomer, modelling the most important properties of the person under consideration.

3The services are described as entities having functional imports and exports, so far these func-
tions have been specified as semantic labels on the conceptual abstraction level.

4The transportation of services is studied under the latest research topic on virtual eHomes in
the eHome group.

3.6. THE LIFE CYCLE OF THE EHOME MODEL INSTANCE 25

The Customer class is important for eHome related business processes which is a
topic beyond the scope of this thesis, but is thoroughly handled in [Kir05]. The In-
habitant class models the inhabitant of the eHome. The relation is In between the
classes Inhabitant and Location represents the location information of the inhab-
itant describing where the person is currently located (for example, if mother is in
the kitchen). This information is needed for the services which require information
about the location of the people in the house.

0..n

0..1

Is in

Inhabitant

String : surname
String : name

Character : gender
String : birthday

Person

String : id

Customer

collapsed

Location

Figure 3.8: The inhabitant context of the eHome model

3.6 The Life Cycle of the eHome Model Instance

This section gives an overview of the life cycle of the eHome model instance in
four stages throughout the SCD-process and runtime of the eHome system. We
describe how the eHome model instance is formed and transformed during the SCD-
process and which model contexts are involved in specification, configuration, and
deployment phases of the SCD-process; but also how the model instance is changed
and used during the runtime of the eHome system.

As mentioned, the eHome model is designed using Fujaba tool, but this model
is actually a meta model for specific homes. This particular eHome is modelled by
using the eHome model instance. This instance is constructed and modified during
the SCD-process and also during the runtime of the eHome system. The life cycle
of the eHome model is iterative due to the iterative nature of the SCD-process but
also because nearly every software engineering process is iterative. Therefore, the
life cycle of the eHome model instance can return to its earlier stages according to
the phases of the SCD-process and runtime of the eHome system.

To give a better idea of the changes throughout of the life cycle of the eHome
model instance during the SCD-process and runtime of the eHome system, we in-
troduce an illustrative example. This example consists of a simple scenario of the
application of the SCD-process for a small apartment. This home is converted into
an eHome by deploying one eHome service into its living space. The next subsec-
tions give the illustrative scenario and stages of the life cycle of the eHome model
instance.

26 CHAPTER 3. THE EHOME MODEL AND THE SCD-PROCESS

3.6.1 Illustrative Example of the SCD-process Application Case

As an example of the SCD-process, we have a small apartment, consisting of a hall,
a bathroom, a living-room, and a bedroom. The living-room has a small kitchen
corner for cooking (see Figure 3.9). This is a typical bachelor apartment for one
person. The owner of this home is a bachelor who loves music and wants to hear the
music everywhere in his apartment, while taking a bath, for instance. Nearly all of
his music collection is on the PC. He can buy an expensive sound system connected
to the computer and supporting at least three pairs of speakers. However, he would
expect his sound system to be a little smarter than that. In this case, he would like
to have the following feature: if a particular person listens to the music, the music
played at the time follows the person from room to room.

Figure 3.9: The floor plan of the example apartment.

In order to meet this additional requirement and solve the music coverage prob-
lem, it is possible to install a few additional devices and one corresponding eHome
service for the inhabitant, transforming his living space into an eHome. The required
service is called Music Follows Person service. This service routes the music from
one room to another, particularly to the speaker systems in these rooms. The Music
Follows Person service is activated by the person in one of the rooms by switching
the corresponding switch. The preselected music stream starts to play in this room.
When the person leaves the room, the music stops playing in the room and is played
in the room the person enters. The movements of the person are tracked by a person
detection system.

3.6. THE LIFE CYCLE OF THE EHOME MODEL INSTANCE 27

Using the SCD-process and the corresponding tool support for the process, the
described eHome service is selected and deployed into the eHome. The example
of the music loving bachelor and Music Follows Person service is used to illustrate
the following sections and to give a better idea of the changes in the eHome model
instance during the SCD-process.

At this point, the example only consists of the wish of the customer and the floor
plan of his apartment. In the next sections, this example is refined and extended
relating it to the different model contexts and the SCD-process. The next subsections
correspond to the four stages, which form the life cycle of the eHome model instance.

3.6.2 Changes in the eHome Model Instance Structure During the
Specification Phase

The specification phase of the SCD-process addresses most of the model contexts, in
particular the functionalities, device definitions, devices, the environment, service,
and inhabitant contexts. As the name of the phase states, all the necessary data for
the next process phases is gathered during specification as user or third party input.

The specification process involves several parties. It is even possible that a
home owner does not participate in the process, except by submitting an order for
the desired services for the eHome system. In this case, the third parties like the
corresponding service providers perform the whole SCD-process.

The specification phase can be viewed on two levels:

1. the specification of the common bearings of eHomes and eHome systems like
device definitions and services used in numerous eHomes;

2. the specification of the characteristics of the particular eHome like its floor
plan, existing devices, and selected services.

We will first address the general part of the specification and then move on by
describing the specification of a particular eHome.

Specification of Common Aspects for eHomes

Considering the example where the Music Follows Person serviceis needed, it is
necessary to specify the functionalities, devices, and services before it is possible to
offer the services for the customer. Thus, the specification starts with addressing
the functionalities.

The required set of functionalities have to be defined beforehand. The corre-
sponding model context (see Section 3.5.1) implies that the functionalities have to
be organized into a tree structure. The tree expresses the refinement hierarchy of
the functionalities, in which the children of a functionality refine the parent. For
example, detection can be refined by movement detection and smoke detection. Fig-
ure 3.10 outlines a tree of functions which are needed to describe the Music Follows
Person service and the required sub services described later in this section. The
functionality tree in the figure consists of three main branches: detection, music
follows person, and drive. The branches are refined where necessary, for example
the detection function is refined by detecting person, movement, and switching.

28 CHAPTER 3. THE EHOME MODEL AND THE SCD-PROCESS

Figure 3.10: The necessary functionalities for the Music Follows Person service.

Likewise, the devices used by the services have to be specified. For example,
Figure 3.11 describes a simple web-cam definition in the device definition context of
the eHome model. This web-cam can be used for getting a video stream or pictures
from a room used for movement detection or person recognition. The description of
the device is rather simple. It only describes a device as an entity with necessary at-
tributes, for example, an USB camera number, IP address, or some other addressing
attribute.

Figure 3.11: The definition of a web-cam used by the person tracking system.

The device definition is as simplified as it is since the information on the function-
alities of the devices is described elsewhere, namely in the service context. For exam-
ple, the service encapsulating the device driver of the named web-cam is presented
in Figure 3.12. This service aggregates the web-cam functionalities for providing
a picture stream and information about the movement in the room, providing an
aggregated functionality motionprogram. This functionality can be used by other
services or software. The number in the brackets behind the provides relation
represents the cardinality of the functionality. In this case “-1” indicates that this
functionality as a resource can be used by an indefinite number of other services.
The cardinalities are discussed more thoroughly in Section 3.6.3.

Apparently the services can be developed and defined so that they wrap the
functionalities of the devices. But services can also be developed to use other services
and offer an additional value for other services or for eHome inhabitants directly.
Figure 3.13 depicts a Person Detector service for tracking a person from room to
room. This service definition requires the described motionprogram functionality

3.6. THE LIFE CYCLE OF THE EHOME MODEL INSTANCE 29

Figure 3.12: The specification of the Motion Controller service, which uses a web-
cam to detect movement.

and switching functionality5. These functionalities are combined by this service
to offer person detection functionality. The person detection functionality can be
used directly by the Music Follows Person service (see Figure 3.14).

The two required functionalities are used by the Person Detector service in
the following way: when the switch is pressed, the person tracking is activated
and the tracking itself is done via the motionprogram functionality offered by the
Motion Controller service (see Figure 3.12). The Motion Controller service supplies
the Person Detector service with image data, which can be processed to track the
person under consideration.

Figure 3.13: The specification of the Person Detector service, which tracks person
movements in the eHome.

Figure 3.14 describes the example of the Music Follows Person service needed
by the bachelor living in the five room apartment. This service offers the music
follows person functionality the bachelor needed, i.e. this service offers its func-
tionalities directly for the inhabitant. To offer this functionality, the Music Follows
Person service requires not only the person detection functionality but also a sound
routing functionality soundroute. It means that if the person is detected in a room,
the sound stream assigned to this person is routed into this room. The person
detection functionality is provided by the Person Detector service. It is obvious
that there is also a service offering the soundroute functionality. However, neither

5switching functionality refines the detection functionality.

30 CHAPTER 3. THE EHOME MODEL AND THE SCD-PROCESS

this nor the on/off Switching service6 offering the switching detection functionality
required by the Person Detector servicewill be described in this section.

Figure 3.14: The specification of the Music Follows Person service.

As we can see, the services are designed so that they can be composed to enable
the reuse of the service software. The service composition is done via the functionali-
ties. The functionalities represent the abstraction layer which provides the necessary
flexibility needed for the service composition done during the configuration phase of
the SCD-process (see Section 3.6.3).

The three presented services describe one part of the composition tree. The
lowest level Motion Controller service controlling the web-cam device is used by the
Person Detector service, and the latter one is used by the Music Follows Person
service. These dependencies are explained in sections 3.6.3 and 3.6.5.

Up to this point, the activities in the specification phase have been of general
nature. It means that the specification of functionalities, device definitions and
services can in general be applied for every particular home. The next activities
described in this section are specific for every single eHome considering the home
environment and the customer requirements.

Specification of the Particular eHome

The specification phase of the SCD-process covers the specification of the eHome
environment addressing the environment context of the eHome model. The specifi-
cation of the particular eHome by the home owner himself or some service provider
makes sense after the functionalities, device definitions and services have been spec-
ified by the device manufacturer, service provider or other parties. Hence, executing
the SCD-process to create an eHome has clearly the goal to have the eHome services
running in the living space.

The specification of the home environment has the objective of modelling and
defining the surroundings for the running eHome services. Modelling of the environ-
ment begins with specifying the floor plan of the eHome, the rooms, doors, windows
etc. (see Figure 3.9) – the locations, sub-locations, and location elements (see the
environment context in Section 3.5.4).

Figure 3.9 shows a floor plan of our explanatory example (see Section 3.6.1).
The figure depicts the eHome environment from the environment context, with six

6The Switching service is depicted in Figure 3.18.

3.6. THE LIFE CYCLE OF THE EHOME MODEL INSTANCE 31

locations: Hall, Bedroom, Bathroom, Living-room, and Kitchen-corner as a sub-
location of the Living-room7. The Hall has a location element Entrance Door, but
also location elements (doors in this case) connecting it to the other three locations.

This example corresponds to the environment context of the eHome model (see
Section 3.5.4), where an Environment class has the contains relation to the Loca-
tion class and Location class has the contains relation to the LocationElement
class. This example includes the sub-location concept, but no devices modelled in
the environment. The device modelling will be addressed in the next section in the
scope of our example, the bachelor’s eHome environment. Although the example
does not include the already existing devices in the bachelor’s apartment, they can
also be modelled beforehand in the specification phase of the SCD-process. The
configuration phase then includes the devices in the configuration of the eHome.

The specification phase consists of the service selection activity. The home-owner
has to select the services he/she likes to have in his/her eHome. In our example,
the bachelor would like to have the Music Follows Person service in his apartment.
The result of this selection must be captured in the model. Figure 3.15 presents
the same sample environment information as Figure 3.9, but with another layout
for the objects under consideration. Additionally, it presents the service selection
information – the Music Follows Person is selected for the Living-room.

Figure 3.15: The Music Follows Person service is selected for the living-room.

In our example, the bachelor wants to have the Music Follows Person service.
This service is selected and it is also determined in which room the service will be
running in. For the sake of simplicity, Figure 3.15 shows only the case where the
service will only be running in the living-room which is not the case in the complete
example described in Section 3.6.1. The same figure shows the connection between

7The Kitchen-corner sub-location of the Living-room will be considered as a part of the example
for the specification phase but not in the following process phases since it provides no additional
explanatory value.

