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Chapter 1

Introduction

This master thesis focuses on my work with the multi-core processor architecture

named Cell Broadband Engine (CellBE) used in Playstation 3 (PS3) gaming consoles.

I mainly worked on solving large systems of linear equations using the conjugate gradi-

ent method. These systems usually arise from physics or other areas where di�erential

equations need to be solved. As a result I present an optimized solver which can be

used as a general purpose library running on the PS3. It has already been used in a real

time wave simulator and visualizer application written together with Oleg Batra²ev for

the Teeviit 2009 education fair. As a further result, I present techniques, the library

API and show how to use them for developing scienti�c applications for the CellBE

architecture and also how to extend them in the future.

In the ever-growing hunger for more computing resources at cheaper prices and lower

power consumption, the architecture and price of the PS3 makes it very attractive for

scienti�c applications. It has a good peak FLOPS-per-watt and FLOPS-per-dollar

ratio [20]. From the hardware design perspective, it stands somewhere between general

purpose processors (CPUs) and graphics processors (GPUs). Not all problems can be

implemented near that peak. These problems will be discussed in more detail in this

thesis. Also solving systems of linear equations is e�ected by these problems mainly

due to the inherent memory access patterns.

While being a general purpose computing platform, it turns out to be more di�cult

to develop optimized code for this distributed memory multi core platform than initially

expected. The problem areas suitable are either limited or require extensive work to

use the full potential of the hardware. During my work it happened multiple times

that I had to abandon particular implementation strategies because of the too steeply

growing complexity that made the code error prone and very hard to manage. In the

end I learned that usually simple, elegant and performance-wise not on the very edge

algorithms are practical enough for solving anything non-trivial. In this work you will

�nd a few examples of what did not work, but mostly I focus on the solutions that

worked, are reusable and portable to other CellBE applications.
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The �rst hands on experience I got with the PS3 platform was during a research lab

on 2008 spring at University of Tartu. It was organized by Ulrich Norbisrath and Eero

Vainikko who are also supervisors of my thesis. After the course I started working at the

Distributed Systems Group [4] at University of Tartu. The main topic was learning the

platform by trying to implement an e�cient conjugate gradient solver. The same topic,

but di�erent approach, was tried out by Lauri Tulmin, who also participated in that lab

and started working at Distributed Systems Group afterwards. Until writing this thesis

we have had similar progress timeline, but we both have worked quite independently.

The major milestone in my work was developing a real time surface wave simulation

and visualizer together with Oleg Batrashev [12]. It was used at Teeviit 2009 fair [5] to

introduce possibilities of this gaming system in scienti�c computing to potential future

students at our faculty. It consisted of a server on a PS3 running the simulation and

a regular computer doing hardware accelerated 3D visualization. These two commu-

nicated with each other over UDP. Inside the visualizer application you can control

the whole simulation process primarily by resetting it with di�erent parameters and

creating waves on the surface interactively by using the mouse.

The main result of my work is an e�cient code base for PS3 written in C [3] that

can be integrated and used in other projects that require conjugate gradient solver.

The code base has few dependencies and a simple API. To use it, it is only necessary

to include a header �le and link to a static library. The library does all the resource

management and optimizations needed for CellBE platform so that you can write

regular portable C code. In this thesis I will explain some of the approaches I tried

and the one that �nally got fully implemented. The API of the library is also covered

to show how to use it properly.

Besides the usable conjugate gradient solver library, a simple independent resource

management and program �ow coordinator API emerged. It e�ectively abstracts away

complexities of the underlying APIs without sacri�cing performance. It can be done

by limiting the options how to parallelize the problem to only one SIMD-like (single

instruction, multiple data) approach. This is most suitable for problems that involve

large vectors. In general the API is not PS3 speci�c and not even limited to one

machine. If there existed an implementation of that API for a cluster of PS3s, then

scaling your application from one PS3 to a cluster would require no source code changes,

but just linking to a cluster-aware library. The e�ect on overall performance can then

be tuned by setting di�erent data distribution �ags to your data items. The data

transfer over network and caching on various levels of this distributed memory system

is handled implicitly. At this time the API design is �xed, but only one-PS3 version of

it is implemented. A cluster-aware version of it may be future work.

The thesis is organized as follows. At �rst in chapter 2, I will explain the motivation

behind the work by introducing the hardware platform. In chapter 3, I will present some
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of the works that in�uenced my work. In chapter 4, I will cover the conjugate gradient

method and my approaches to optimizing it. As the matrix-vector multiplication being

the most di�cult part of the work, a whole chapter 5 will explain the details of the

calculation. In chapter 6, I will present the C APIs I developed and also brie�y describe

the real time wave simulator written for fair Teeviit 2009. Chapter 7 concludes my work.
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Chapter 2

Motivation

In this chapter I will introduce the CellBE architecture and one of its materializations

- the Playstation 3 gaming console. At �rst, I will write a bit about the history of the

console and what makes it attractive. Next, I will make a small introduction to the

hardware and what a programmer needs to know about it. In general, the features that

make CellBE so powerful, also make writing the code for it a lot more di�cult than

for traditional x86 or PowerPC architectures. Still, for writing non-optimized code,

you can entirely overlook the CellBE architecture and write code for regular PowerPC

core.

2.1 History

The Playstation 3 or o�cially "PS3" for short by Sony is currently one of the most pow-

erful video game consoles on the market. The �rst version was released in November

2006 [9]. From there on, the console has been sold with di�erent hardware con�gura-

tions and colors all over the world. The main distinctive feature when compared to

other consoles on the market and past Playstations is that Sony o�cially allows people

to install other operating systems on it (feature called OtherOS). This has enabled

cheap access to computing power for many who previously had to use supercomputers

or clusters in their work.

In September 2009 a new revised Playstation 3 Slim hit the market. Together with

re-branding and hardware upgrades, the OtherOS functionality was dropped. Sony

explained it as focusing on entertainment content and that it would be overly costly

to keep OtherOS functionality [8]. The OtherOS functionality was eventually dropped

in every PS3 starting from system software update to version 3.21 which was released

on 1st of April 2009 [7].

The CellBE architecture also appears in other computing systems. The IBM Road-

runner was the world's fastest supercomputer until November 2009 consisting of AMD

Opteron and PowerXCell 8i processors and achieving over 1 PetaFLOPS [11]. There
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also exist various add-on cards for personal computers for speci�c and general purposes

like video encoding.

2.2 Hardware speci�cation

For writing e�cient programs you either need to know the hardware or alternatively

use tools or frameworks that know the hardware. Since the PS3 speci�cations are easy

to locate in the Internet, I will not just list them, but try to comment on the most

important parts based on my experience.

3.2GHzCellBECPU. Having 1 PowerPC CISC core (PPE) and 7 specialized RISC

cores (SPE) makes this a very unique CPU. Features like distributed memory in

the chip and annoyances like data alignment in memory are discussed in more

detail later on. To be absolutely correct, the CPU has 8 SPE units from which one

is disabled in the factory and another one is reserved for the system. Therefore

only 6 SPEs are available under OtherOS.

256Mb XDR DRAM. This amount is usually not enough for solving problems of

large data, but having 25.6 Gb/s of memory bandwidth will usually not leave

the CPU starving. Very roughly, the total amount of memory available limits

the problem size for the solver I have implemented to about maximum 5 million

matrix elements.

1Gb Ethernet. While being more than enough for home computing, it is quite slow

and with high latency for using in GRID environments. Theoretically, when

on average ~704 or more instructions are performed using one double precision

�oat before moving it over the network, the network bandwidth will not become

the bottleneck. This is because 1 Gbit/s = 0.125 GBytes/s and with peak 11

GFlop/s, we can do approximately 11 ∗ sizeof(double)/0.125 = 704 operations

per �oat before we can move it.

550 MHz NVIDIA/SCEI RSX 'Reality Synthesizer' 256Mb GPU. Unfortunately

access to graphics card and its memory is severely restricted by Sony. This can be

used only as a framebu�er for Linux without no 2D or 3D hardware acceleration.

40Gb 2.5" SATA HDD. The console has a HDD from witch you can use 10 Gb less

than the total HDD size. The remaining 10Gb is used by PS3 itself for games,

save games, multimedia and such.

Other notable features are a Blue-ray drive, HDMA output, Bluetooth, USB, WiFi,

but in my work these are not important.
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2.3 Multicore PPU/SPU model

The CellBE architecture has a multicore processor with two kinds of cores [10]. These

are called "Power Processor Element" (PPE) and "Synergistic Processing Element"

(SPE). The PS3 has one PPE core with two hardware threads having duplicated CPU

registries, but shared computation units. 6 SPE vector processor cores are available

for programmer under Linux environment. These cores share the CPU clock and have

means of communication, but they run on their own. Some sources call these cores

PPU and SPU. The "U" stands for "Unit". Since I am more accustomed to the latter

naming, I will use that from now on.

The PPU is optimized for running conventional programs. In fact, it is PowerPC

compliant and therefore is capable of running any Linux PowerPC kernel and any pro-

gram compiled for it. The programs do not need to know the underlying hardware, but

usually they want, because they want to use speci�c PS3 hardware. When distributing

code over PPU and SPUs, the PPU is usually used for control or task oriented parts,

while SPUs handle SIMD operations. But being free of hard alignment restrictions and

direct access to main memory sometimes makes PPU much more feasible over SPU for

certain types of calculations.

Each SPU is an independent RISC SIMD vector processor having its own 256kB

RAM called LS (Local Storage), program, stack, registers, MFC (Memory Flow Con-

troller) and all it needs to run on its own. LS is initially empty and does not have any

sort of operating system running on it. A SPU program is loaded into the LS by the

PPU. During the execution of the SPU program, it has access to its LS and to the main

memory by using explicit DMA calls. The SPU has also methods for communicating

with the PPU and other SPUs over a high speed EIB (Element Interconnect Bus). The

logical connectivity of the PPU and SPUs is drawn on the �gure 2.1. Along with them

various high level interfaces are mentioned.

SPU is powerful in computations, but not e�cient in branching. Scalar calculations

require all data to be aligned to work e�ciently. It works only on 128 bit aligned chunks

of data. There are a few special purpose (like stack, program pointer) and 128 general

purpose registers each 128 bit, which give a lot room for the compiler to optimize out

unnessecary moving of data. CPU operations are designed so that any register of these

128 can be used as source or destination with a few exceptions.

The SPU has two instruction pipelines. Which pipeline the instruction goes into

is determined on whether it treats the register as full 128 bit quadword or as a 128

bit vector of some data type (4 �oats for example). Instructions in separate pipelines

can be executed simultaneously. Therefore two continuous operations per CPU clock

is achievable and code can be hand-optimized for the case when the compiler fails. In

general, instructions that work on full quadwords go to odd pipeline (load and store,
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Figure 2.1: Connectivity diagram inside the CPU [10]

shift quadword, ...) and those working with vectors of 4 byte or less elements in it, go

to even pipeline (4 �oats, 16 chars, ...). Without the MFC (Memory Flow Controller)

on the picture, the even and odd pipeline among with LS and SPU registries is laid

out on the �gure 2.2.

PPU and SPUs can be viewed as independent computers with means of communi-

cation. This model allows various approaches on how to coordinate work, but the most

common is to have a star topology where the PPU is in the center and each SPU is in

the following cycle:

1. wait for a command from PPU

2. execute it

3. send the result back to PPU and goto 1

In the search for possible bottlenecks, it is good to know how bus bandwidth and

latencies compare to the computational resources available. Each SPU is capable of

performing one instruction in both pipelines per one CPU clock cycle. For PS3 that

is maximum 6.4 billion operations on 128bit vectors in SPU registry �le when even

and odd pipeline can be dual issued. An instruction usually takes more than one

cycle to execute, but we can ignore that when assuming all instructions are properly

pipelined. Moving a vector between LS and registry �le usually has no latency, that is,

it occurs during one CPU cycle as any other assembly instruction. Sometimes ongoing

DMA transfers degrade load/store performance, but the e�ect is insigni�cant. The only

exception for how long it takes to execute an instruction is when doing double precision
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Figure 2.2: SPU local resources and pipeline [10]

arithmetic. It stalls instruction pipeline for 6 CPU cycles and therefore each double

precision operation takes 7 times more time than any other. Since all instructions

operate on 128 vectors, one instruction can add 16 8bit integers together at the same

speed as for example multiplying 4 �oats together. Given the performance in GFlops

for single precision �oating point FMA (fused multiply add) yields to 6*8*3.2=25.6

GFlops and for double precision 6*4*3.2/7~=11 GFlops.

The EIB (Element Interconnect Bus) connecting all SPUs, PPU, I/O and memory

controller together consists of 4 rings that can hold up multiple transfers simultaneously.

It is designed to provide enough bandwidth that will not leave endpoints starving for

data. Each connected device can access the rings at 25.6 Gbytes/s. However the

latency is somewhat traded for bandwidth. The main problem is related to mailboxes

that are used to transfer 32bit integers between devices. The round trip time PPU-

>SPU->PPU is 7..8 microseconds which is slow. Compared to the almost achievable

maximum main memory bandwidth that is 25.6 Gbytes/s, one can transfer 192 kbytes

of data during the round trip time. One can deal with it is by making as much work

as possible between using mailboxes and by using barriers for synchronization.

In this chapter I have introduced Playstation 3 as a computing platform. I have

covered some of the hardware features that make it exciting and are relevant in my work.

PS3 has a lot of potential while being very challenging to write code for. Exploiting

the novel hardware features in PS3 is what motivates to work on conjugate gradient

and other problems from HPC �eld.
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Chapter 3

Related works

CellBE is a relatively new platform in the HPC (High Performance Computing) �eld.

It is probably best known for being used in currently the world's second most fastest

supercomputer IBM Roadrunner and also for being used in the Playstation 3 gaming

console. Most of the related work is targeted to these two. In this chapter, I will give

a small overview of projects that I have encountered and that have inspired me while

working on the conjugate gradient solver.

There are multiple challenges when implementing solvers of linear equations on the

PS3 platform. The simplest case is when direct methods like Gaussian elimination

with dense matrixes and single precision are used. Jakub Kurzak and Jack Dongarra

have implemented a mixed precision solver using Gaussian elimination in single double

precision combined with iterative re�nement to improve the result to full double preci-

sion accuracy [19]. The computationally complex parts LU factorization and forward

and backward substitution are done in single precision having complexity O(n3) and

double precision is used where complexity is O(n2) or less. The achieved performance

was an impressive 98.05 GFlops when it was run on 3.2 GHz CellBE processor. Since

it was not a PS3 they could use all the 8 SPUs and had more memory. Later on they

improved their mixed precision solver by adding Cholesky factorization and improved

parallelization scheme [18]. Their work is available to the public [?].

D. DuBois and others have compared a few supercomputing platforms [15] by eval-

uating how these perform when solving double precision sparse problems with non-

preconditioned conjugate gradient solver. One part of it focuses on IBM Roadrunner

that uses the same CellBE architecture as PS3, but is combined with AMD Opteron

processors to form a large hybrid (two CPU types with mixed endianness) supercom-

puter. Their work is comparable to my work since they evaluate only one Opteron

CellBE pair inside a TriBlade [17]. They try out many di�erent approaches before

settling down to one. The main di�erences compared to my work is that they use

ELLPACK-ITPACK matrix storage format and they use purpose-designed software

based cache on SPUs for matrix vector multiplication. The overall performance they
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achieved for conjugate gradient was a bit over 1.7 GFlops. The code is not public.

In �A Rough Guide to Scienti�c Computing On the Playstation 3� [14] they im-

plemented a conjugate gradient solver for tri-diagonal case with Jacobi preconditioner.

Due to the nature of the problem, the parallelization scheme is static and easily vec-

torizable. They achieved a performance of 6.6 GFlops, but it is not stated whether it

was single or double precision. To my knowledge the code has not been made public.

The core of conjugate gradient method is sparse matrix vector multiplication. Vari-

ous matrix structures are evaluated by Williams [23]. They try out various optimization

strategies for many multicore platforms including PS3. Their �ndings are that matrix

vector multiplication is almost always SPU bounded on PS3, because of the relatively

low double precision performance. On the other hand, explicit DMA will not leave

SPUs in data starvation and therefore memory e�ciency is very good. The mean per-

formance they achieved over various matrix types was 3 GFlops. Although they have

plans to integrate the results into OSKI (Optimized Sparse Kernel Interface) package,

I could not �nd any CellBE related code in their publicly available code base [2].

Lauri Tulmin also worked on conjugate gradient solver [22] at Distributed Systems

Group at Tartu University, but our approaches were di�erent. The main di�erence

is in matrix-vector multiplication method where I used tiny grained block format for

matrix, but my colleague tried out a more conventional approach using a modi�ed

version of row major format. In the future it may be desirable to merge the best of

these two approaches together to form a library.

In this small chapter I have provided an overview of works that I studied when

formulating my approach. These works include dense solvers, sparse solvers and just

sparse matrix-vector multiply kernels. All these tend to deal with either somewhat

special cases or are proof of concept works without publicly available code base. In my

work I tried to build a more robust and easier to use solver.
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Chapter 4

Conjugate gradient method

In this chapter I will describe the conjugate gradient method from programmers per-

spective and show how I have parallelized it. I will not describe the mathematical

background of the algorithm. To learn more, refer to this material [21].

4.1 What is the conjugate gradient method?

The conjugate gradient method is an iterative method for solving a large system of

linear equations in the form

Ax = b

where given matrix A ∈ Rn,n and right hand side vector b ∈ Rn, we can �nd x ∈ Rn

that is a good enough approximation of the real solution xreal. For the method to

work, the matrix must be symmetric (AT = A) and positive de�nite (xTAx > 0 for all

non-zero vectors x ∈ Rn). Otherwise it may not converge, but if it still does, we can

�nd a solution.

Algorithm 4.1 gives an iterative conjugate gradient method in Python (written by

O. Batra²ev). It takes as an input the matrix A and the right hand side vector b. It

returns the result vector x when a precise enough solution in regards to prede�ned

ERROR margin has been found.

4.2 Parallelizing conjugate gradient for PS3

For my application I have reordered the operations inside the iteration which helped

me to write better parallel code. It is still the same algorithm, but what I have done

is that the vectors x and r are now computed in the beginning of the loop not at the

end. Also the vector copy operation p = r is removed from the loop. The pseudocode

for the algorithm is on algorithm 4.3.
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Algorithm 4.1 Iterative CG in Python

de f cg (A, b ) :
x = numpy . z e r o s (A. shape [ 1 ] )
r = b − dot (A, x )
k = 0
whi le dot ( r , r )>ERROR:

rho = dot ( r , r )
i f k==0:

p = r
e l s e :

beta = rho/rho_
p = r + beta∗p

q = dot (A, p)
alpha = rho/dot (p , q )
x = x + alpha∗p
r = r − alpha∗q
rho_ = rho

return x

To make sure that it is still the same algorithm, we need to observe how x , r and p

are computed in the �rst and in the last iteration. In the �rst iteration we have α = 0

which ensures that x and r stay the same as they were in the original loop. Making

p = r is trickier, but we can accomplish it by setting rho_ = ∞. Any very large

number is enough for practical purposes. The last iteration is also equivalent because

we have placed the rho < error check right after computing the norm of r.

Reordering is needed since we want to exploit the data level parallelism by dividing

each vector into parts and logically binding each part exactly to one SPU. That SPU

will be responsible for writing into that part and nowhere else. It can read any other

vector part and it is up to the programmer to keep synchronization points so that the

next operation will not start reading data from other SPU's part when it has not been

�lled yet.

This partitioning scheme and writing policy makes all vector operations needed for

this algorithm parallel without the need for inter-SPU communication or write locking.

There exists 3 synchronization points from which one can be almost eliminated in

theory. Two of these are where α and β are evaluated, and the third is just right before

the sparsedot method. For the sparsedot we need to access vector p elements that are

out of range assigned to the SPU doing the calculation. For assuring that all of the

vector p is �lled, we wait for the last operation to complete before executing sparsedot.

It is illustrated by the algorithm 4.3.

The vector part size is chosen to be a multiple of 128 bytes which is a 16 double

precision vector element. When the vector size is not initially a multiple of elements
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Algorithm 4.2 C-like pseudocode for conjugate gradient

vec to r s o l v e ( vec to r A, vec to r b , double e r r o r )
vec to r r , x , p , q
double rho , rho_ , alpha , beta
r = b
x = p = q = 0vec
rho = alpha = beta = 0
rho_ = +i n f

do {
x += alpha ∗p
r −= alpha ∗q
rho = dot ( r , r )

i f ( rho < e r r o r ) break ;

beta = rho/rho_

p = beta ∗p + r
q = spar sedot (A, p)

alpha = rho/dot (p , q )
rho_ = rho

} while ( rho > e r r o r )
return x

Algorithm 4.3 Parallel execution of conjugate gradient method

PARALLELISM PPU each SPU
do {

+−−−+−−−+−−−+ do part 0 −> SPU
| | | | my_x += alpha ∗ my_p
| | | | my_r −= alpha ∗ my_q
| | | | my_dot = dot (my_r, my_r)
+−−−+−−−+−−−+ rho = <gather>
| cg done? | i f ( rho < e r r o r ) break ;
| beta = . . . | beta = rho / rho_
+−−−+−−−+−−−+ do part 1 −> SPU
| | | | my_p = beta ∗ my_p + my_r
| | | | −−− sync −−−
| | | | my_q = spar sedot (A, p)
| | | | my_dot = dot (my_p, my_q)
+−−−+−−−+−−−+ tmp = <gather>
| alpha = . . . | alpha = rho / tmp
| | rho_ = rho

} whi l e ( . . . ) ;
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SPU1 SPU2 SPU3
r 0 . . 3 1 3 2 . . 6 3 6 4 . . 8 0
x 0 . . 3 1 3 2 . . 6 3 6 4 . . 8 0
p 0 . . 3 1 3 2 . . 6 3 6 4 . . 8 0
q 0 . . 3 1 3 2 . . 6 3 6 4 . . 8 0

Figure 4.1: Vector block distribution when vector size here is 80 and block size is 16

we want, we just pad it from the end with zeros. In memory the vector o�set is chosen

to be aligned to 128 bytes. This is needed for the cache-line to be e�cient, because

reading less than 128 bytes will still make a 128 byte fetch to the main memory. In

practice it is usually better to transfer larger chunks of data per request to achieve

better bandwidth. Therefore, I use vector chunk sizes that are larger than 16 elements.

In my implementation the size is runtime-con�gurable and can be as large as 2048

elements which is the maximum size DMA can handle in one request.

After the vector has been divided into blocks, those blocks are distributed over

available SPUs for block-cyclic distribution. When the block count is not a multiple of

an SPU count, then some SPU-s will get 1 block less. To e�ciently overlap computation

and vector blocks DMA transfers, it is better to have as many blocks as possible per

SPU. Since we also want to have vector block size as big as possible, the performance

will not be good for small vectors. In the current implementation, the block size is

manually speci�ed, but it might be wise to adjust it according to the vector size. The

�gure 4.1 illustrates how the vector elements would be distributed if the chunk size was

16 and there were 3 SPUs.

When the main parallelization scheme has been sorted out, the last and the hardest

part to optimize is the matrix vector multiplication operation (sparsedot). Since we

know how the vector can be partitioned, we only need to decide how to store the matrix

in memory so that it can be used e�ciently on the CellBE architecture. As expected,

it was the major challenge in my work. The chapter 5 is dedicated to describing how

the matrix vector multiplication works. Before that I go through the rest of the steps

in conjugate gradient.

4.3 Optimizing each CG step

For linear algebra there exists the BLAS library for both PPU and SPU [1]. At �rst

I tried to use these, but soon found that they were not �exible enough. The reason

why I could not use PPU BLAS library was because I needed to implement matrix

vector multiplication on the SPUs myself. Mixing BLAS managed SPU threads and

sparsedot threads was di�cult without much bene�t. The SPU BLAS library could

have been suitable for a few methods, but I chose not to use it. This is because there
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were operations that were not directly implemented in SPU BLAS and I also wanted

to use combined methods. For the few BLAS methods I reimplemented, I got not

signi�cantly, but still 1-2% better performance and I set vector size to be a multiple of

16 while BLAS required 32.

The main pro�ling tool I used on SPU code was spu_timing from the IBM Cell

SDK [6]. When you compile you program, you can also export the generated assembler

for it. The spu_timing tool annotates that assembler �le with static timing analyzes.

For each operand you will know if it was dual issued, how many CPU cycles it took

to execute and how many CPU cycles was it stalled because of registry dependencies.

However, there are numerous parameters that spu_timing does not tell. The most

important of those is the e�ectiveness of branch hinting. No hints or wrong hints may

cause CPU stall for over 10 CPU cycles. Another less notable e�ect to actual CPU

cycles used and those predicted by spu_timing is due to the LS (Local Store) accesses

by the MFC (Memory Flow Controller). Most commonly an ongoing DMA transfer

for example.

The main goal when using spu_timing tool was to ensure that the compiler does

not generate any unnessecary assembly instructions. Using only 128bit aligned vector

data types and SPU intrinsics was usually enough to achieve this. Sometimes it was

nessecary to explicitly use X form of SPU load (si_lqx) operation when address could

be computed by hand faster than compiler generated code did. Another big goal was

to minimize dependency stalls by logically decoupling data, usually by unrolling loops.

Then the compiler could reorder the operands and minimize stalls. For e�ective branch

hinting, I simply kept inner loops as long as possible and let the compiler insert all the

hints. It is interesting to note that using __builtin_expect in the for-loop condition

gave better results only sometimes. In general, GCC did pretty good at reordering

dependencies and branch hinting at optimization level -O2 and -O3. Using higher levels

never improved the performance of hand tuned code, sometimes it degraded over 10%.

Occasionally it was nessecary to force variables into CPU registries, because it seemed

that GCC could not handle large amount (total 128) of SPU general purpose registries

e�ciently. Combining the ability to force variables into CPU registries and write SPU

intrinsics that are essentially SPU assembler instructions wrapped into convenient C

functions, it was not nessecary to write assembler directly. There would have been no

or tiny speed increase, but an even greater burden on the programmer.

Besides the inner loop optimizations in SPU code, synchronization and main mem-

ory access need to be e�ective. Here I mainly relied on DaCS (Data Communication

and Synchronization Library) provided by IBM for CellBE [?]. Using it simpli�es pro-

gramming for PPU and SPU, because one does not have to deal with low level resources

like MFC or SPU thread management. It provides you a small set of functions which

fall into 3 categories: ecosystem (eg. loading SPU program into LS, resource allocation
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and releasing), synchronization directives for master-worker model (sending messages,

group barriers) and DMA transfers between main memory and SPU local store. On

top of DaCS I built a few non CG speci�c lightweight functions to simplify double

bu�ering, distributing workloads and gathering return values. More about it is written

in the section 6.2.

For PPU code and DMA optimizations I referred mainly to CellBE Programming

Handbook [10]. While DaCS library is designed to handle many tasks e�ciently, I still

had to put some e�ort into making it happen. One of the most important issues is

the usage of huge pages which can be enabled in Linux kernel. It will make use of

hardware provided 16Mb memory pages instead of the default 4kB pages. Each main

memory access has to translate the process speci�c virtual address to physical memory

address. For e�ciency in chip TLB cache is used for that. Since this is a relatively

scarce resource, accesses spanning a lot of pages will generate TLB cache misses that

are very expensive to handle. These are processed by the Linux kernel and usually

take over 1000 CPU cycles to execute. Another signi�cant factor that contributes to

the speed is how SPU mailboxes are checked for incoming data. For some reason that

I have not investigated yet, busy loop polling for messages is multiple times faster than

using blocking calls.

For each CG step I calculated how it would perform when theoretical CellBE main

memory bandwidth was saturated at 25.6 Gb/s. Then I measured how fast SPU cores

could do the calculation without any main memory access and �nally I measured how

fast the step performs when combining the calculations with all the nessecary data

fetching-storing from the main memory. Each operation and bytes needed per FLOP

and the theorical and measured performances are presented in the table 4.1.

SPU measurements were made with vector of 2048 elements (16kB). The �rst half

of the table contains single steps and the second half contains combinations of steps to

save memory bandwidth. For example axpy operation needs to transfer 2 doubles from

main memory and put one 1 double back to evaluate one element in the result vector.

That is transferring 8*3 bytes and doing 2 FLOPs on them, hence 12 bytes/FLOP. Since

the memory bandwidth is 25.6 Gbytes/s we can not do better than 25600/12=2133

MFlops. How fast all 6 SPUs combined together can execute the axpy operation having

all the data locally available in LS was measured to be 7140 MFlops, meaning that this

operation is de�nitely main memory bandwidth bound. The last column in the table

shows how well the main memory bandwidth could be utilized when all 6 SPUs run in

parallel and work on main memory. In the case of axpy, I achieved 1691 FLOPs which

reaches about 79% of peak memory bandwidth.

The memory limited bandwidth for sparsedot is calculated based on the assump-

tion that matrix element count per vector element is in�nity. Therefore we do not need

to include vector elements in bytes/�op ratio. Sparsedot5 and comb_cgb5 use the
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C mnemonic operation bytes/�op memory limited measured 6 SPU measured actual

axpy y ← αx+ y 8∗3
2

= 12 2133 MFlops 7140 MFlops 1691 MFlops

xpay y ← x+ αy 8∗3
2

= 12 2133 MFlops 6882 MFlops 1691 MFlops

dot ← xT y ∼ 8∗2
2

= 8 3200 MFlops 8016 MFlops 3084 MFlops

dot_self ← xT x ∼ 8
2
= 4 6400 MFlops 8749 MFlops not measured

sparsedot y ← Ax 16
4

= 4 6400 MFlops see table 5.1 3431 MFlops

sparsedot5 y ← Ax 5∗16+2∗8
5∗4 = 4.8 5333 MFlops see table 5.1 2913 MFlops

comb_cga
x← x+ αp
r ← r − αp
rho← rT r

∼ 8∗3+8∗3+0
2+2+2

= 8 3200 MFlops 7956 MFlops 2578 MFlops

comb_cgb5
q ← Ap
dot← qT p

∼ 5∗16+2∗8+0
5∗4+4

= 4 6400 MFlops not implemented not implemented

Table 4.1: Expected and measured performance of CG steps

model where there are approximately 5 matrix elements per 1 result vector element. In

the byte/FLOP ratio value matrix macroblocks are used - per one 16-byte macroblock

that contains 2 original matrix elements, we do 4 FLOPs. The macroblocks are es-

sential in my design and are covered in the next chapter. The sparsedot5 performs

slower than sparsedot since the latter spends most of the time in the inner loop fetch-

ing matrix elements and using them to update the result vector in a double bu�ered

way where calculations are overlapped with DMA transfers. In the case of sparsedot5

we do the same, but now we spend less time in the double bu�ered loop. That is, we

need to fetch the �rst matrix block before we can enter that loop.

How the SPU cores perform on sparsedot does not depend on how many matrix

elements there are per vector element. Instead the matrix structure is important. How

it a�ects the performance is covered in the section 5.2 and comprehensively shown

in the table 5.1. The actual measured performance taking into account all the main

memory accesses is evaluated on the most suitable matrix. The details about such

matrixes are covered in the following chapter, but it is worth mentioning here that the

absolute worst case matrix that still has elements near its main diagonal will achieve

approximately 50% of this measured number.

Currently no measurements for comb_cgb5 exist, since it is not implemented yet.

Also dot_self is currently only available within comb_cga method. In general, all

operations besides sparsedot are memory limited. Referring to the measured max-

imum combined 6 SPU performance of 4476 GFlops for sparsedot in table 5.1, the

maximum of approximately only 75% of memory bandwidth can be used. In the reality

however, the achieved performance is less than that (about 2913/5333=55%), suggest-

ing that the DMA transfers are not performing as well as they should. This needs

further investigation.

When these steps are combined to form conjugate gradient, the numbers for all

measurements except sparsedot should be achievable for any input large enough. The

sparsedot depends on the input matrix structure, but since it uses tiny grained ap-
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proach, the e�ects of �bad� matrixes should be minimized as long as they are diagonal

type.

The overall algorithm speed depends on the input data, but for rough comparison I

achieved 2542 MFlops for the overall conjugate gradient method with diagonal matrix

having 5 elements per row close to the main diagonal. The vector size was 131072 and

matrix had 655360 elements before packing. The performance measurements taken

with di�erent matrix and vector block sizes can be found in the appendix. How well

the matrix got packed, how many elements were not evaluated on SPU, how many

groups were formed, how many groups were able use fast �oat to double conversion

and how many packed even and odd elements were created can be seen in the following

matrix structure dump.

-------------------------- MATRIX ffffffad2a0 --------------------------

Format: PACKED Total size: 23.07M Useful data size: 12.59M (54.55%)

Even elements: 0 327674 Compress ratio: 50.00% Non -parallelizable: 1530 (0.47%)

Odd elements: 655348 458740 Compress ratio: 58.33% Non -parallelizable: 3060 (0.67%)

Group count: 514 (even+odd) Using fast f2d: 512 (100.00%)

Checksum: 131066 OK

-------------------------- /MATRIX ffffffad2a0 -------------------------

In this chapter I brie�y introduced the conjugate gradient method for solving linear

systems of equations. Then I showed my approach how to parallelize it and how it suits

for PS3 or in theory, any other distributed memory multicore platform. After that I

described primary methods I use to conjugate gradient operations together with the

measurements. Next I will talk about the most challenging operation, that is matrix

vector multiplication.
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Chapter 5

Sparse matrix vector multiplication

In this chapter I will cover the challenges I was faced with when implementing matrix

vector multiplication on CellBE platform. Then I will go through the multiplication

core design principles and implementations with measured performances for each one of

them. Some cores make use of custom fast �oat to double converter which is discussed

next. Finally I will go through the process of restructuring the matrix to a format

suitable for the cores.

5.1 Challenges

CellBE handles single precision dense linear algebra very well. The BLAS SGEMM

routine in the Cell SDK provided by IBM [6] computing single precision matrix-matrix

multiplication achieves close to peak computational performance which is 8∗3.2 = 25.6

GFlops per SPU when using pipelined FMA (fused multiply add which does 8 single

precision �oating point operations per CPU clock cycle) running at 3.2Ghz. For 6

SPUs on PS3 this totals to 25.6 ∗ 6 = 153.6 GFlops. Peak FMA performance is almost

achievable because load and store operations between SPU local store and SPU registry

are dual-issued and all data transfers from main memory to local store run in parallel

with the computations. This also applies to other BLAS routines like matrix-vector

multiplication, because bytes/FLOP is su�cient enough. For routines like adding two

vectors, the memory bandwidth sets the upper performance bound. The performance

for BLAS routines is usually bounded either by peak SPU computational performance

or memory bandwidth. Peak values for both of these are almost achievable. In fact,

any problem su�ciently data parallel can be implemented very e�ciently on CellBE

where

• computations can be vectorized

• large continuous memory areas are accessed predictably
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• bytes per computation is low

• inner loop can be pipelined

• inner loops do not require branching

• synchronization point count it relatively low

The sparse linear algebra is much more challenging. Many of the CPU features that

make SPUs so good at dense linear algebra, make it hard to do sparse linear algebra.

To my knowledge, IBM has provided optimized BLAS routines and reference imple-

mentation for dense LINPACK on CellBE, but there are no sparse matrix kernels. Here

I present the main problems that are listed in [14] and [13] and also add some more

conjugate gradient speci�c ones. I will also describe in brief, how I approached each

one of them.

Vectorization In general, it is pretty hard to vectorize operations on sparse data.

One must either use some reorganized vector format in matrix representation

or compose and decompose vectors on the �y while computing. Examples of the

�rst approach are compressed sparse row/column, blocked compressed sparse row

(BCSR), some triangular and diagonal storage formats. There are many papers

covering speci�c matrix types, some of them are listed in the chapter 2. However,

in general when the sparsity pattern is not known, computational overhead of zero

valued elements will cut the performance. Building vectors on the �y is not very

suitable for CellBE because of the memory alignment restrictions and too big

computational overhead. In my work, I used the most small grained approach

that can exploit fused multiply add (FMA) fully for double precision. For this I

organize matrix elements into two types of macroelements (even and odd) each

containing 2 original matrix elements. This way the wasted computations for the

worst case are 50% and for a random matrix 25%.

Memory alignment On the CellBE you have to use main memory (and therefore

DMA transfers) for any problem size bigger than what �ts into the SPE local

store. For the best bandwidth you have to align all memory accesses to cache-

line 128 bytes and the bigger blocks you transfer the better. When data is

already in SPU local store you should access it so that the address is 16 byte

aligned. Otherwise, the compiler must use extra assembler instructions for each

memory access that still do 16 byte aligned vector load and then unpack the

portion you requested. In my work I have overcome this by using 16 byte matrix

macroelements, that store 2 elements from original matrix. Some precision loss

is unavoidable, but without it design complexity or memory usage would grow
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multiple times. In fact I tried to implement inner loop kernels using macroele-

ments that keep full precision, but packing matrix into such blocks proved to

be too time consuming and complex with little bene�ts. How the precision loss

a�ects the result needs further investigation, but it is equivalent to reducing the

input matrix precision before giving it to the solver which operates only on dou-

ble precision. Currently the precision used in stored elements is 32 bits, but by

switching to custom binary �oating point format, the precision can be raised to

52 bits. When casting to double is done with custom binary format instead of

the standard format (IEEE-754), the performance will also rise. Unrelated to

the precision used in matrix macroelements, all calculations are done in double

precision.

Double bu�ering The explicit DMA transfer on SPU requires that the application

knows beforehand what data it needs. This way transferring chunks of data and

computation can occur simultaneously. In general, when doing sparse matrix to

vector dot product, it will need one random access to main memory per element.

In general, with block formats you need one random access to main memory per

block. All these accesses must happen explicitly as DMA transfers and whenever

possible, during computing the last element or block. In my work I group vector

into chunks and organize matrix macroelements into groups such a way that

I can have matrix data and vector data being transferred to SPU local store

during last block computation most of the time. In current implementation there

remain some matrix elements that are handled only by PPU which will drastically

drop overall performance, but that is not a problem of design, but just not yet

implemented on SPU side.

Unrolling and pipelining Loop unrolling may be a problem when loop length is not

known or there are data dependencies inside the loop. To overcome this I use

two techniques. One is that whenever I group matrix macroelements, I try to

make sure the group size is multiple of 4. The other one is that I keep elements

in group ordered such a way that I can unroll inner loop by a factor of 4.

Limited memory Having only 256Mb main memory and 256Kb local store per SPU,

we need to use it e�ciently. Having duplicate data in memory would be a waste.

Even when it is temporary it may be a problem. Input binary matrix data may

use up over half the memory needed for application which means we really want

to avoid copying it and want to do as much operations as possible in place without

copying the data when restructuring is needed.

Waiting at synchronization points Whenever the data is not optimal (mainly when

matrix is unbalanced) or memory transfers are not completed in order so that
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some SPUs are left idle, we want to minimize the e�ect this has to the whole

computation. For matrix-vector multiplication I currently do not do any vec-

tor chunk size adjustments to balance matrix elements used for that chunk, but

I have thought about this and it is possible without restructuring the program.

For the conjugate gradient loop however, I group some steps together to minimize

waits and also avoid transferring same data multiple times whenever possible.

Staying general purpose solver There are cases when a sparse problem has enough

structure in it so that solving it can be reduced to a special case. How some of

the special cases are handled is described in the chapter 3. In my solver design

I wanted to stay as general as possible when it comes to matrix structure. This

means not the highest peak performance (but still good enough), but support for

all kinds of matrixes. Speed will gradually drop as the matrix gets less suitable for

the optimizations I have chosen, which are for small-grained diagonal matrixes.

Being preconditioner ready To improve conjugate gradient method, one usually

wants to add some sort of preconditioner. In the current implementation there is

no preconditioner, but it is designed so that adding an optimized and parallelized

Jacobi preconditioner would be as e�ortless as possible.

Double precision is slow To cut cost and complexity in PS3, double precision arith-

metic operations are not fully pipelined on SPU. This means that all such in-

structions introduce 7 CPU wait cycles on SPU during which no other arithmetic

instruction can start. For all other arithmetics, every operation takes 1 CPU

cycle when properly pipelined. PS3 CPU successor named PowerXCell does have

fully pipelined double precision arithmetics, but this is not available in PS3. In

the inner loop for each matrix macrolement, two double precision operations are

performed. One is the conversion from single precision to double precision and

another is the fused multiply add (FMA). We can do nothing about FMA, but in

some cases the single to double precision can be done only in 1 cpu cycle when

properly pipelined. The same technique can be used to convert any precision any

�oating point number to double precision, but then we have to use nonstandard

binary format that is not compatible with IEEE 754.

To sum up the design and the current implementation from user's perspective, you have

a vanilla double precision conjugate gradient solver that has matrix elements stored in

single precision. The best performing matrix structure is a balanced diagonal matrix.

Element distribution pattern near the diagonal does not a�ect the performance much,

but elements far from the diagonal signi�cantly reduce it. Solving small problems trying

to exploit various levels of parallelism will not succeed, but as vectors and matrix get

bigger you get much better results. Maximum matrix and vector sizes are limited to
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how many huge pages you can allocate. The input matrix is in coordinate format and

during all the conjugate gradient preparing and computation the memory size taken

under matrix and vectors will not be bigger than Aelements ∗ 16 + rhssize ∗ 4 ∗ 8 bytes.

Minimal memory is used besides huge pages. The solver is exposed as C library with

a few easy to use functions and it can handle any matrix where some perform better.

There are features that I have thought about, but have not yet implemented.

Adding these would probably not need restructuring existing code. Performing all

matrix-vector multiplication operations on SPU would eliminate the performance drop

currently caused by processing some matrix elements on PPU side. Then we could re-

move one synchronization point right after matrix-vector multiplication and save time

as retransferring two vectors for subsequent dot product is not needed. By switching to

custom �oating point format, we can save time in matrix-vector multiplication kernel

and also increase matrix element storage precision up to 52 bits. A data aware ma-

trix and vector distribution logic can be added to make unbalanced matrixes perform

better. The initial matrix restructuring process is not fully optimized and runs only

on PPU. Some of the steps can be parallelized between SPUs. Last, but not least, a

Jacobi preconditioner can be added that works on the same matrix structure.

5.2 Matrix-vector multiplication kernel

The matrix-vector multiplication kernel is designed for matrixes with unknown sparsity

pattern. That means we cannot just use block format, because it may introduce too

much overhead with redundant zero-valued elements inside a block. In addition, we

have to handle the data in such a way that we can still use DFMA (double precision

fused multiply and add) assembly instruction on a vector of two doubles. Otherwise

we can not achieve good performance, because double precision operations stall the

SPU execution pipeline for too long. Working with data out of 16 byte alignment

would also contribute to wasted CPU cycles spent on reordering the data. The DFMA

operation would use two doubles from vector p, two matrix elements and update two

result vector q values as shown on the �gure 5.1. This section explains how I organize

matrix elements so that we can use DFMA in such a way. With these being the main

points, I �rst constructed the kernel for one SPU and then built all the data distribution

and parallelization around it.

Since this multiplication is done as part of conjugate gradient I use the same vari-

able names as there. I use the same names throughout this thesis for consistency. Some

markup may not be conventional, since I try to stay close to the actual C implemen-

tation. For example I use x and y as indexes instead of i and j, because these are very

often used as loop variables in C. Let the multiplication be de�ned as follows:
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Figure 5.1: DFMA operation does 4 FLOPs on 128bit vectors each containing two
double precision values

q = A · p
q0
...

qn−1

 =

 a0,0 an−1,0

. . .

a0,n−1 an−1,n−1

 ·
 p0

. . .

pn−1


q ← 0, ∀x, y qx ← qx + ax,ypy

Running this directly on SPU is very ine�cient, because all the vector elements

in double precision are 8 byte aligned and we also can not use DFMA e�ciently,

because the elements are not blocked in any way. The simplest way to overcome these

two problems at the same time is to block matrix elements into 2x2 macroelements

and optimize SPU code for it. However in the worst case this method gives only

25% of e�ciency. However, we can break the 2x2 block further to get two 2 element

macroblocks which are to relatively simple to implement and give 50% e�ciency at

worst case. I call these even and odd macroelements or packed elements depending on

context. The macroelements are de�ned and used in the multiplication as follows.

q ← 0

∀Aeven

(
qx

qx+1

)
←

(
qx

qx+1

)
+

(
ax,y 0

0 ax+1,y+1

)
even

·

(
py

py+1

)

∀Aodd

(
qx

qx+1

)
←

(
qx

qx+1

)
+

(
0 ax+1,y

ax,y+1 0

)
odd

·

(
py+1

py

)

By having x and y values macroblock aligned all vector accesses are 16 byte aligned

as desired and we can also use DFMA directly on vector data loaded to SPU registries

for even macroelements. For odd we need to execute one extra instruction to �ip

doubles for vector p macroelement.

As it can be seen, I switched to looping over matrix macroelements Aeven and Aodd
instead of x and y. This is because I do not want to have nested loops inside SPU

code, because branching is expensive and the code would be more complex to optimize.

However, the problem it raises is that I can not unroll the loop without worrying about
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Figure 5.2: Matrix elements in memory: unpacked, currently used macroelement and
optimal macroelement format

data dependencies. When two or more q macroelements with the same x are processed

in the same inner loop iteration , the output will be corrupted. I avoid this by having

matrix macroelements sorted by x. This way, when the matrix element count that the

inner loop processes (also matrix block size from section 4.2) is big enough, I can divide

these matrix elements into equally sized parts and unroll the inner loop so that each

unrolled thread works on one part. Unrolled threads are safe to execute when each one

has unique set or x values. Is such unrolling safe is determined during initial matrix

prepare per group. When it is safe, a �ag is set for the group so that SPU can know

beforehand, which matrix-vector multiplication kernel it can use.

I have not yet talked about data structures that I use. For vectors this is trivial,

since they are just array of double precision �oats. All accesses to it are by macroele-

ment o�set which means they are all 16 byte aligned.

Matrix macroelements are more complex. For even and odd elements the binary

format is the same, but values are handled di�erently. We want access to matrix

macroelements also to be 16 byte aligned. For that we need each element size to be

multiple of 16 bytes. Since hardware limits maximum size I can transfer with one

DMA operation to 16kbytes which is 1024 vector macroelements, I need only 20 bits

of addressing room for coordinates ( 210 = 1024 ⇒ 10 bits per one coordinate) in

optimal case. Combining this with the fact that we can avoid expanding input matrix

while forming macroelements even in the worst case, it is desirable to keep one matrix

macroelement not bigger than one unpacked element. To achieve that we must give

away about 10 bits of precision, but that is toleratable, when all the calculations can

still happen in double precision. The formats described are illustrated on �gure 5.2

Currently, I drop the precision to as low as single precision, because then it is

directly binary compatible with hardware and I can use FESD assembly instruction

to convert single precision to double precision right before DFMA. But it turns out,

unfortunately, that FESD is even slower operation than DFMA. Fortunately there are

some lucky cases when we can do this much better. I call it simply fast �oat to double

conversion here. It can be also modi�ed to support custom precision numbers with the

same conversion speed as for single to double has.

Since SPU is bad at branching, all the combinations of the methods described here,
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type optimizations time per 1 SPU per 6 SPU

even unroll by 4 + fast to double 5.492 s 746 MFlops 4476 MFlops

odd unroll by 4 4 + fast to double 5.572 s 735 MFlops 4410 MFlops

even unroll by 4 7.096 s 577 MFlops 3462 MFlops

odd unroll by 4 7.416 s 552 MFlops 3312 MFlops

even fast to double 11.248 s 364 MFlops 2184 MFlops

odd fast to double 12.531 s 327 MFlops 1962 MFlops

even - 12.531 s 327 MFlops 1962 MFlops

odd - 13.814 s 297 MFlops 1782 MFlops

Table 5.1: Matrix-vector multiplication kernel optimization benchmarks on SPU

must be hard coded together and be hand-optimized in SPU matrix vector multiplica-

tion kernel inner loop. There are total 23 = 8 of them by combining:

• odd or even matrix macroelement

• no unrolling or unrolling into 4 threads

• does not use fast to double or uses fast to double

The actual measured performances of these combinations are listed in table 5.1. Since

the SPU instruction timing is static and the computational kernel does not access any

shared CellBE resources, the result is accurate and always achievable. For the tests

I use 1024 matrix macroelements, because this is the largest block of macroelements

SPU can fetch from main memory with a single DMA operation. Using small matrix

macroelement count will be somewhat slower, because loop initialization time is not

amortizised out. Vector sizes do not a�ect the result. Since the code is heavily hand

tuned, compiler optimizations between -O2 to -O4 did not change the result and using

-O5 produced even slightly worse results. All the benchmarks are compiled with -O3

option, execution time is measured with unix time utility and the operation in test is

repeated 1 000 000 times.

From the table 5.1 it can be seen that the actual measured speed is two or more

times slower than the theoretical maximum given in section 2.3 which is approximately

11 GFLOP/s total per 6 SPUs. Dense linear algebra can use memory access patterns

where load/store operation operate on continuous memory locations. In sparse matrix-

vector multiplication kernel this is not so. Per one FMA instruction, at �rst matrix

element must be unpacked (probably using fast �oat to double described in the next

section) and inspected to locate source and destination vector addresses. Then these

vector macroelements are loaded, FMA is executed and result is stored back. For dense

cases, the unpacking and address computation is not nessecary, thus the di�erence.

This is the cost of �ne grained approach.
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Figure 5.3: Converting �oat to double (half of the quadword)

5.3 Fast �oat to double conversion

Current packing the matrix elements will loose the �oating point precision from double

to single. In the future versions the precision loss may be smaller, but a loss of a

few bits is still inevitable unless bigger than 16 byte macroelements are used. In this

chapter I will present a way how in some lucky cases two single precision numbers

can be converted to double precision with only one CPU cycle on SPU when pipelined

properly.

The DFA assembly instruction that converts two �oats to two doubles inside a

128bit vector is just as slow as DFMA. It takes 19 CPU cycles to execute from which

it stalls execution pipeline for 6 cycles. Therefore even in the best case, the con-

version takes 7 CPU cycles. However, when the �oat is known to be in the range

(−131071.98... − 0.000030517580, 0, 0.000030517580...131071.98), then you can use a

much more e�cient conversion that requires 2 SPU instructions. Those will execute in

separate SPU pipelines, so that compiler can usually reorder them for dual issue unless

there are dependency stalls. Therefore it usually takes only 1 CPU cycle to execute.

Even in the worst dependency stall case, it will not take more than 6 CPU cycles for

the whole conversion to complete.

The CellBE uses IEEE-754 �oating point binary format consisting of 1 bit sign,

exponent and fraction. 32 bit �oat has 8 bit exponent and 23 bit fraction while 64bit

�oat has 11 bit exponent and 52 bit fraction. The conversion process copies the sign and

fraction, but the exponent part must be recomputed because it is encoded di�erently.

To get the actual exponent, one has to decode it by subtracting exponent bias from

it, which is 127 for single precision and 1023 for double precision. The process on

conversion is visualized on �gure 5.3.

To convert a quadword containing 2 �oats to doubles, we must initially have the

�oats at the same position as DFA instruction requires. In addition the unused space

must be contain zeros like this {�oat, 0, �oat, 0}. If you do not make sure that there

are the zeros, the conversion would still work, but the result would contain a small

fraction of �randomness�.

The conversion uses two assembly instructions. The �rst shifts the input quadword

by 3 bits to the right to get the whole fraction part and 7 least signi�cant bits of

30



Algorithm 5.1 Fast conversion from �oats to doubles in C

qword f2d_maskb = (qword ) ( ( vec_uint4 ){ // constant
0x07FFFFFF , 0xFFFFFFFF, 0x07FFFFFF , 0xFFFFFFFF} ) ;

qword f_in = ( qword ) ( ( vec_f loat4 ){32 . 1 f , 0 ,
−0.017 f , 0 } ) ; // 0−s are important
qword d_out ;

d_out = si_rotqmbi i ( f_in , 5 ) ;
d_out = s i_se lb ( f_in , d_out , f2d_maskb ) ;

// d_out conta in s here ( vec_double2 ){32 . 1 f , −0.017 f }

exponent correct. The second instruction selects bits from input quadword and shifted

quadword to get the sign and the 4 most signi�cant bits of exponent correct. Using

the SPU intrinsics in C the exact algorithm is shown on algorithm 5.1.

5.4 Restructuring the matrix

The restructuring process consists of 6 distinguishable steps that are currently all

performed on PPU, but in theory some of them can be also done on SPUs in parallel

fashion. I call these steps as follows: splitting, sorting, packing, grouping, �xing group

o�sets and resorting groups. Despite the number of steps needed, the overall complexity

of it is low when the input matrix is already sorted. When it is not sorted, then the �rst

sorting will take most of the time, because it currently uses vanilla quicksort algorithm.

Also when the matrix rows get longer, packing step (matrix macroelement forming)

will take more time, because it needs to scan elements from the next row.

The overall procedure of reorganizing the matrix is shown on �gure 5.4. Blocks

represent data structures - the structure type, name and size are given in C notation.

Arrows accompanied by bold text show how the data is processed in one or two words.

Split step takes the matrix elements and divides them into two parts named even and

odd where even elements have (x+y) mod 2 = 0. This is needed for the following

packing step which can use 2 even elements to form one even macroelement or 2

odd elements to form one odd macroelement. Those macroelements will provide

as �ne granularity as possible while being directly able to fully use DFMA (double

precision fused multiply and add) on SPU. Throughout the preparing stage the

even and odd ranges and handled separate from each other except the very last

one. The splitting is done in 2 steps: �rst we count range sizes for both element

types and then we just walk through the elements and put them where they
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Figure 5.4: Overview of matrix reorganization
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belong. The complexity of this is O(n).

Sorting step takes matrix elements and orders them by x ascending. The sorting does

not care about y and also it does not have to be stable. This process is needed

for the packing step and also combined with the last step makes it possible to

pipeline inner loop in SPU code. This is described in more detail later on. When

the input matrix elements are already ordered then this step just checks the

ordering and completes fast. It should be noted that this is indeed so, because

splitting did not change the ordering by x. The sort is implemented by quicksort

so in general the complexity is O(n logn) which is the worst among other matrix

preparing steps when initial matrix was not ordered already.

Packing is a step where matrix elements are combined into 2 element macroelements.

I call it packing, because in this step memory usage of the matrix can only

decrease. This is so because each macroelement holds one pair of coordinates

and two matrix element values which will all �t in 16 bytes. Original matrix

elements also used 16 bytes. Some precision loss is inevitable with this approach,

but it greatly simpli�es overall implementation. I also have constructed matrix-

vector multiplication kernels for more complex macroelements using full double

precision and respecting the 16 byte alignment, but packing original matrix into

those proved very complex, time consuming and error prone. Currently I use

single precision in macroelements, but it can be increased up to 52bit by using

custom �oating point format.

The packing step will search for the following patterns in the input matrix. Here ax,y
stands for original matrix element value and 4 number groups written down as {...}even
and {...}odd denote packed element (macroelement).(
ax,y 0

0 ax+1,y+1

)
→
{
x
2
, y
2
, ax,y, ax+1,y+1

}
even(

0 ax+1,y

ax,y+1 0

)
→
{
x
2
, y
2
, ax+1,y, ax,y+1

}
odd

x mod 2 = 0

y mod 2 = 0

All the packing step can be done in place and indipendantly for even and odd

elements by just walking over the matrix elements ascendingly. For each matrix element

we search for the match. Since we have sorted the matrix, we only need to look no

further than rx + kx+1 elements ahead where rx is the remaining element count in the

current row x and kx+1 is the element count in the next row. The complexity for this
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Figure 5.5: Grouping of matrix macroelements

is O(n ∗ kavg) which is good because usually average row length kavg is small. After

this step the matrix and vector coordinates we work on are macrocoordinates which

assures that all memory access for vector data will be 16 byte aligned.

Grouping step groups matrix macroelements in such way that all groups (except last

one in current implementation) can be processed in matrix vector multiplication

in parallel. For simplicity the last group currently contains macroelements that

are evaluated by PPU after all SPUs have done their work in parallel, but this

does not have to be so. To get the macroelements grouped e�ciently, we do

it in two passes. At �rst we walk the macroelements ascendingly to count how

many elements each group will contain. Then we can use that data to move each

macroelement to right place by moving each one only once. The group number

is determined by the the following rule:

group_nr =

bx÷ vector_blockc , if bx÷ vector_blockc = by ÷ vector_blockc

group_count− 1 , otherwise
The outcome of the grouping is illustrated on �gure 5.5. Assigning groups to SPUs is

not done during matrix prepare, but to see how the groups will get eventually divided

between SPUs and PPU, can also be seen from that �gure. The grouping step has

complexity of O(n).

Fixing group o�sets step will convert macroelement x and y values from global

space to local space. This way we can transfer block of vector data with DMA

into SPU local store and we can address it directly. This adjustment is not done

for the last group, since PPU does not do any DMA and accesses vector data

directly. During this walking through matrix elements in this simple step we also

mark which groups can use fast �oat to double conversion. This is discussed in
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detail in section 5.3. Complexity of this step is O(n) and the equation used for

o�set �xing is the following.

x = x− group_nr ∗ vector_block

y = y − group_nr ∗ vector_block

Resorting groups �xes macroelement order that may have been lost during group-

ing. The grouping step will not preserve the sort order, but it usually does not

signi�cantly reorder the elements either. We care about the sorting order because

we want to unroll matrix-vector multiplication kernel on SPU. For this we must

not have data dependencies between matrix elements evaluated in one inner loop

iteration. It turns out that by having macroelements sorted by x makes it easy

to determine at runtime whether SPU can unroll matrix-vector multiplication

kernel or not. How it can be done in written in section 5.2.

In this chapter I gave an overview of the matrix vector multiplication and how it is

implemented on PS3. At �rst I show a few challenges that anyone implementing it

must face. Then I show how the multiplication works algorithmically and how what

kind of inner loops did I implement. All inner loops are accompanied by measurements

of their performances. Then I presented a way how to do single precision (or any

precision lower than double) conversion to double much faster in some special cases

than it is normally done on SPU. For the matrix vector multiplication kernels to work,

the matrix needs to be restructured. How this is done was covered lastly in this chapter.

In the following chapter I will brie�y show how the solver can be used.
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Chapter 6

Usage examples

In this chapter I will introduce the solver C implementation and show how to use the

APIs. One is the conjugate gradient solver API and the other is a more general purpose

API that I designed to simplify using the resources provided by CellBE. Lastly I will

show one application where the API is used - a real time wave simulation for Teeviit

2009 education fair. While describing current working version of the solver, it may

change as code matures.

6.1 Conjugate gradient C API

The API is currently usable through a static library or by directly including source

code. In general one needs to create the solver giving matrix (in coordinate format)

and right hand side vector with function solver_create(...). The solver needs to be

freed with solver_free(...) before exiting. The solver may be created and destroyed

multiple times during the execution of main program. The creation step allocates SPU

resources and prepares all data for following conjugate gradient. Among this matrix is

also restructured. The freeing releases SPU resources held and clears up any memory

allocated.

After the solver is set up, one can let it run for max_iterations or until result

is accurate enough regards to error with function solver_solve(...). When this

function returns with error larger than speci�ed, then it could not �nd good enough

solution in max_iterations. To improve the result, one may call this function as many

times as needed, but keeping it from running forever by limiting max_iterations.

When the same matrix can be used with many right hand side vectors, the solver

can be reset without fully destroying and recreating it. A solver_reset(...) method

clears solver internal state. Calls to solver_solve(...) will make it start from

the �beginning�. Using this can avoid wasting time on solver creation and matrix

reorganization.

The data types used are dataset_t for solver state, matrix_t for matrix and
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vector_t for vector. These are available through library headers. The underlying

structures are simple, so that they can be easily accessed and modi�ed between solver

iterations. There are also a few functions to simplify matrix and vector allocating,

freeing, loading from disk and saving to disk. Supported formats are currently Matrix

Market format, simple text format and binary format.

6.2 Ecosystem C API

The conjugate gradient solver is implemented against a more general purpose star

topology master-worker model-providing API that I call either �ecosystem� or by code-

name �LW� (derived from lightweight). It basically provides two main features, one is

resource management (SPU reserving, memory sharing, initializing group barriers, ...)

and the other is sending orders to SPUs and gathering results back. It can be used to

handle DMA memory transfers too with double bu�ering for overlapping DMA with

computation. The ecosystem is built on top of DaCS, which makes it possible to use

most of the DaCS features without con�icts.

The main design goal of this ecosystem is to make writing parallelized algorithms

much easier than it would be with either DaCS or lower level approaches. Then it

is possible to concentrate on tuning the algorithm cores or overall data distribution

schemes. Otherwise a considerable amount of time may go to writing glue and data

masquerading code. The ecosystem is designed to act nice with the surrounding appli-

cation by posing as little requirements to coding and runtime environment as possible.

The only requirement is having DaCS library present at runtime.

The LW consists of two parts - PPU and SPU part. These must be used together.

Calling lw_startup(...) will �start� the LW ecosystem, load the SPU program into

each available SPU and put them into loop where they wait for commands from PPU.

Calling lw_cleanup(...) will instruct all SPUs to exit gracefully freeing any resources

used. After that lw_shutdown(...) will �close� the LW ecosystem. When running,

one can use lw_sig...(...) functions to give orders to SPUs who will receive it

through on_signal(...) callback.

To use the ecosystem one has to do the following in minimal:

• include lw.h in PPU code and lw_spu.h in SPU code. For double bu�ering

methods, include dbuf.h on SPU side too

• use lw_startup(...), ..., lw_cleanup(...), lw_shutdown(...) sequence

in PPU code

• call lw_main() in main loop and implement on_startup(...), on_signal(...)

and on_cleanup(...) on SPU code
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on PPU side on SPU side description

startup

lw_mem_share lw_mem_accept shares a main memory region to all SPUs

lw_set_signal_range... - instructs LW about how to split vectors among SPUs

cleanup

lw_mem_destroy lw_mem_release releases previously shared memory

normal operation

lw_signal on_signal gives and order to all SPUs

lw_send_int lw_recv_int sends integer to all SPUs

- dbuf_pull... pulls data from main memory in double bu�ered way

- dbuf_push... pushes data to main memory in double bu�ered way

Table 6.1: LW ecosystem methods

Now when the code layout is set, use the methods provided by LW on both PPU and

SPU side to share resources, order SPUs to do work and do double bu�ered DMA. An

overview of what methods are directly available is listed in table 6.1.

The current LW implementation works on one PS3, but the model itself is not

limited to one PS3. In theory it supports any distributed memory model where com-

putational units form a tree structure. The approach is closely related to a paper

analyzing explicitly managed memory hierarchies [16]. In the cluster setup of PS3s

one would have 3 level memory hierarchy. On the top of the tree there would be

one machine that has enough RAM to hold the whole problem, RAM on PS3s would

serve as local copies of the data which are managed by PPUs and accessed by SPUs.

Implementing this would be a future work.

6.3 Real time interactive surface wave visualizer for

Teeviit 2009 fair

One major milestone in my work was providing a conjugate gradient solver for a real

time interactive surface wave simulation for Teeviit 2009 student fair. It was developed

together with Oleg Batrashev and consists of 2 parts. One is a simulator server running

on PS3 and the other is visualizer client. Actually we have two visualizers. Unity3D

powered one which runs on Windows and Mac OS X and is written by me. And another

written by Oleg in Python and OpenGL. The Unity3D visualizer can be seen on �gure

6.1.
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Figure 6.1: Interactive wave simulation real time visualization

From the architecture point of view, this is a client server application with not

too big code base. The system works as follows. A server running on PS3 listens on

a known UDP port. A client visualizer can (re)start the server by sending an UDP

packet. After that a server creates a surface and starts the simulation on it. The

heightmap is sent in �xed discretized time intervals to visualizer using UDP packets.

The visualizer assembles the packets and draws the surface on screen. Pressing mouse

button on the surface seen on the screen will send mouse position back to server over

UDP which generates disruptions in wave horizontal speed vector.

At the time of the fair the solver was only using a fraction of power it does now.

However the approach used there was the same, but some parts in matrix vector mul-

tiplication had to be switched o� because of too many bugs. At the moment the

solver is capable of providing data faster than it can be sent over network to visualizer

and rendered on screen. To get it working smoothly again, the visualizer needs to be

revised.
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Chapter 7

Results and future

This thesis tries to collect together my experience and results from working with the

conjugate gradient solver algorithm on the PS3 platform. The biggest goal from my

work perspective is to have a general purpose solver that can be used in various projects

needing the processing power o�ered by PS3 console. Currently the library is in getting

ready for early testing as missing functionality is added.

Despite the di�culties, the PS3 is a desirable hardware platform for solving large

systems of linear equations. This is mainly because of the price per �op per watt

ratio, but also because of the explicit multicore architecture that can reach very high

percentages from peak performance. For dense matrixes and for some special cases

like tridiagonal matrixes, there already exist pretty good optimized double precision

and mixed precision solvers. When appropriate, one can choose an existing implemen-

tation and use it. Unfortunately only little code is available to public because most

implementations are proof of concept.

To salvage the situation, I have created a double precision conjugate gradient solver

design and implementation with matrix elements stored as single precision. It uses a

very �ne grained (only 2 elements in block) matrix format to minimize the performance

drop for low locality matrixes. It performs best with diagonal matrixes, but can handle

any other type with degrading performance as the matrix gets less suitable. The solver

is available as a static library with easy to use C API.

Some parts of the solver are currently not yet implemented. Before the library

can be used in practice, some of them need to be eliminated. Currently the greatest

concern is that PPU evaluates some matrix elements in sparsedot method. This could

be done much more e�ciently on SPU side and it currently creates big performance

drops when there are a lot of elements far from main diagonal.

The conjugate gradient solver is built on top of a more general purpose minimalistic

ecosystem C API that emerged during the work. Its primary feature is that it simpli�es

programming for multicore platforms with distributed memory hierarchies. The API

is currently realized for running on one PS3, but it can be extended to run on cluster
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of PS3 machines. This transition does not need changing the programs written for this

API. Still, declarative style �ags are usually needed for optimal memory management.

I implemented a showcase of the solver for educational fair Teeviit 2009. The solver

was used in conjunction with interactive real time surface wave visualizer. One PS3

was used as a server and a usual laptop was used to show interactive 3D surface which

could be altered with mouse to create waves. The current solver implementation has

improved a lot after its use at Teeviit. The main di�erence is that now matrix-vector

multiplication is calculated mostly on SPUs, while in Teeviit server code, did not utilize

the PS3 SPU cores as much as now.

A next step to add features like a Jacobi preconditioner and continue testing and

�nding and �xing more bugs. Also integrating the best parts of conjugate gradient

solver implemented by Lauri Tulmin into library is be desirable. The API documen-

tation needs to be extended, especially from usage perspective. After that, a demo

reference implementation of primary use cases should be implemented. Maybe in con-

junction with netcat, NFS (Network File System) or some other widely deployed

technology, it can be used as a service on the local network.

In conclusion I can say that the current prototype works well for diagonal matrixes

and it can be further improved to support other types of matrixes e�ciently too. I

hope that the emerging solver library will bene�t for people trying to use PS3 as a

solver for large problems.
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Kaasgradientidel põhinev lineaar-

võrrandisüsteemide lahendamise teek

Playstation 3 konsoolile

Magistritöö (30 EAP)

Toomas Laasik

Kokkuvõte

Antud lõputöö võtab kokku minu senise töö Tartu Ülikooli Hajusüsteemide Uurimis-

rühmas, kus ma peamiselt tegelesin kaasgradientide meetodil töötava lineaarvõrrandis-

üsteemide lahendaja implementeerimisega Playstation 3 mängukonsoolile. Töö tule-

mustena esitan ma hetkel veel arendusjärgus oleva teegi C keele jaoks, mis mähib selle

funktsionaalsuse mugavasti kasutatavasse pakendisse. Seda teeki on kasutatud juba

Teeviit 2009 haridusmessil laine pinna interaktiivses simulatsioonis. Lisatulemusteks

võib lugeda veel C liidest, mis lihtsustab programeerimist puukujuliste mäluhierarhi-

atega süsteemidele, nagu on üks PS3 või ka klaster PS3 konsoolidest. Hetkel on sellest

kasutatav vaid ühte PS3 konsooli kasutav versioon.

PS3 on odav platform omades head jõudluse ja hinna suhet ja ka head jõudluse

suhet eralduva soojusega. Seal kasutatavad keskprotsessorid on sama arhitektuuriga,

mida kasutatakse ka hetkel maailmas kiiruselt teises superarvutis IBM Roadrunner. See

teeb PS3 platvormi attraktiivseks teadlaste seas, kellel on vaja tegeleda suuremahuliste

probleemide lahendamisega.

Siiski, PS3 mängukonsoolide laialdast kasutuselevõttu teadusarvutustes takistab

arhitektuuriline omapära, mis ohverdab programmeerimise lihtsuse jõudluse nimel.

Riistvaraliste tuumade haldus (SPU ), protsessorisisene lokaalne mälu (Local Store)

kasutamine, tuumadevaheline kommunikatsioon, arvutuste ja DMA mälupöörduste

samaaegsus, piirangud mäluaadresside kasutamisele (cache-line and quadword align-

ment) - kõige sellega peab programmeija ise eksplitsiitselt tegelema, kui ta soovib

saavutada tulemusi, milleks PS3 võimeline on.
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Töö kõigus realiseeritud kaasgradientide meetodit kasutav lahendaja paralleliseerib

arvutused kasutades ühe PS3 konsooli ressursse, sealhulgas ka hajusa maatriksi ja

vektori korrutis. Selle arvutuse optimeerimiseks kasutatakse väikeseteralist blokk-

formaati, mis küll ei paku parimat jõudlust, aga halvimal juhul on ebae�ektiivsus

suhteliselt väike. Samuti ei seata piiranguid maatriksi struktuurile, aga hetkel on

optimeeritud vaid diagonaalsed maatriksid. Andmestruktuuride mälus hoidmine ja

töötlemine on optimeeritud suhteliselt väikese kasutatava muutmälu hulgaga, mis on

256 Mb. Kasutada saab sellest vaid niipalju, kui mitu suurt lehekülge (huge pages)

allokeerida on võimalik. Kõik arvutused teostatakse 64 bitiste ujukomaarvude täp-

susega, aga kasutatava maatriksi elementide täpsust vähendadakse implementeerimise

ja mälukasutuse huvides hetkel 32 bitini ja kuni 52 bitini ilma suuremate koodi muu-

datusteta.

Töö tulemusena on olemas esialgne versioon lineaarvõrrandisüsteemide lahendamise

teegist. Selle edasiarendamisel tekib kergesti kasutatav ja kõigile kättesaadav lahen-

daja.
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Appendix A

Measured performances

Vector s i z e : 131072

Matrix s i z e : 655360

matrix e lements per vec to r element : 5

even macroelement : 327674

odd macroelement : 458740

Format : <vec to r b lock s i z e > <matrix block s i z e >

<measured FLOP/s> (<DMA t r a n s f e r u t i l i z a t i o n >)

Benchmark : spar sedot ( matrix−vec to r mu l t i p l i c a t i o n )

512 256 2.694882 GFlop/ s 13.719417 Gb/ s

512 512 2.772619 GFlop/ s 14.115169 Gb/ s

512 768 2.772619 GFlop/ s 14.115169 Gb/ s

512 1024 2.669930 GFlop/ s 13.592385 Gb/ s

1024 256 2.720306 GFlop/ s 13.848845 Gb/ s

1024 512 2.883524 GFlop/ s 14.679776 Gb/ s

1024 768 2.883524 GFlop/ s 14.679776 Gb/ s

1024 1024 2.826984 GFlop/ s 14.391937 Gb/ s

1536 256 2.645435 GFlop/ s 13.482716 Gb/ s

1536 512 2.854974 GFlop/ s 14.550653 Gb/ s

1536 768 2.912651 GFlop/ s 14.844606 Gb/ s

1536 1024 2.883524 GFlop/ s 14.696160 Gb/ s

2048 256 2.621385 GFlop/ s 13.345251 Gb/ s

2048 512 2.826984 GFlop/ s 14.391937 Gb/ s

2048 768 2.854974 GFlop/ s 14.534432 Gb/ s

2048 1024 2.854974 GFlop/ s 14.534432 Gb/ s
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Benchmark : conjugate g rad i en t method

512 256 2139.920918 MFLOP/ s

512 512 2173.183938 MFLOP/ s

512 768 2173.183938 MFLOP/ s

512 1024 2150.894872 MFLOP/ s

1024 256 2317.262431 MFLOP/ s

1024 512 2410.485632 MFLOP/ s

1024 768 2410.485632 MFLOP/ s

1024 1024 2396.711429 MFLOP/ s

1536 256 2375.415254 MFLOP/ s

1536 512 2458.763158 MFLOP/ s

1536 768 2473.226471 MFLOP/ s

1536 1024 2473.226471 MFLOP/ s

2048 256 2424.419075 MFLOP/ s

2048 512 2541.966667 MFLOP/ s

2048 768 2541.966667 MFLOP/ s

2048 1024 2541.966667 MFLOP/ s
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